PREFACE

The world has changed a great deal since the first edition of this book ap-
peared in 1992, Computer networks and distributed systems of all kinds have
become very common. Small children now roam the Internet, where previously
only computer prefessionals went. As a consequence, this book has changed a
great deal, too.

The most obvious change 1s that the first edition was about half on single-
processor operating systems and half on distributed systems. | chose that format
in 1991 because few universities then had courses on distributed systems and
whatever students learmed about distributed systems had to be put into the operat-
Ing systems course, for which this book was intended. Now most universities
have a separate course on distributed systems, so it is not necessary to try to com-
bine the two subjects into one cotirse and one book. This book is intended for a
first course on operating systems, and as such focuses mostly on traditional
single-processor systems. _

I have coauthored two other books on operating systems. This leads to two
possible course sequences.

Practically-oniented sequence:

1. Operating Systems Design and Implementation by Tanenbaum and Woodhull
2. Distributed Systems by Tanenbaum and Van Steen

Traditional sequence:

1. Modern Operating Systems by Tanenbaum
2. Distributed Systems by Tanenbaum and Van Steen
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XXV PREFACE

The former sequence uses MINIX and the students are expected to experiment
with MINIX in an accompanying laboratory supplementing the first course. The
latter sequence'docs not use MINIX. Instead, some small simulators are available
that can be used for student exercises during a first course using this book. These
simulators can be found starting on the author’s Web page: www.cs.vu.nl/~ast/ by
clicking on Software and supplementary material for my books .

In addition to the major change of switching the emphasis to single-processor
operating systems in this book, other major changes include the addition of entire
chapters on computer security, multimedia operating systems, and Windows 2000,
all important and timely topics. In addition, a new and unique chapter on operat-
ing system design has been added.

Another new feature is that many chapters now have a section on research
about the topic of the chapter. This is intended to introduce the reader to modern
work in processes, memory management, and so on. These sections have
numerous references to the current research literature for the interested reader. In
addition, Chapter 13 has many introductory and tutorial references.

Finally, numerous topics have been added to this book or heavily revised.
These topics include: graphical user intefaces, multiprocessor operating systems,
power management for laptops, trusted systems, viruses. network terminals, CD-
ROM file systems, mutexes, RAID, soft timers, stable storage, fair-share schedul-
ing, and new paging algorithms. Many new problems have been added and old
ones updated. The total number of problems now exceeds 450. A solutions
manual is available to professors using this book in a course. They can obtain a
copy from their local Prentice Hall vepresentative. In addition, over 250 new
references to the current literature have been added to bring the book up to date.

Despite the removal of more than 400 pages of old material, the book has
increased in size due to the large amount of new material added. While the book
1s still suitable for a one-semester or wo-quarter course, it is probably too long for
4 onc-quarter or one-trimester course at most universities. For this reason, the
book has been designed in a modular way. Any course on operating systems
should cover chapters 1 through 6. This is basic material that every student show
know.

If additional time is available, additional chapters can be covered. Each of
them assumes the reader has finished chapters 1 through 6, but Chaps. 7 through
12 are each self contained, so any desired subset can be used and in any order,
depending on the interests of the instructor. In the author's opmion, Chaps. 7
through 12 are much more interesting than the earlier ones. Instructors should tel]
their students that they have to eat their broceoli before they can have the double
chocolate fudge cake dessert.

I'would like to thank the following people for their help in reviewing parts of
the manuscript: Rida Bazzi, Riccardo Bettatt, Felipe Cabrera, Richard Chapman,
John Connely, John Dickinson, Jokn Elliott, Deborah Frincke, Chandana Gamage,
Robbert Geist, David Golds, Jim Griffioen, Gary Harkin, Frans Kaashoek, Muk-
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kai Krishnamoorthy, Monica Lam, Jussi Leiwo, Herb Maver, Kirk McKusick, Evi
Nemeth, Bill Potvin, Prasant Shenoy, Thomas Skinner, Xian-He Sun, William
Terry, Robbert Van Renesse, and Maarten van Steen. Jamie Hanrahan, Mark
Russinovich, and Dave Solomon were enormously knowledgeable about Win-
dows 2000 and very helpful. Special thanks go to Al Woodhull for valuable
reviews and thinking of many new end-of-chapter problems.

My students were also helpful with comments and feedback, especially Staas
de Jong, Jan de Vos, Niels Drost, David Fokkema, Auke Folkerts, Peter Groene-
wegen, Wilco Ibes, Stefan Jansen, Jeroen Ketema, Joert Mulder, Irwin
Oppenheim, Stef Post, Umar Rehman, Daniel Rijkhof, Maarten Sander, Maurits
van der Schee, Rik van der Stoel, Mark van Driel, Dennis van Veen. and Thomas
Zeeman.

Barbara and Marvin are still wonderfui, as usual, each in a unigque way.
Finally, last but not least, | would like to thank Suzanne for her love and patience,
not to meqtion all the druiven and kersen, which have replaced the sinasappelsap |
inrecent tmes,

Andrew S5, Tanenbaum
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INTRODUCTION

A modern computer system consists of one or more processors. some main
memory, disks, printers, a keyboard, a display, network interfaces, and other
input/output devices. All in all, a complex system. Writing programs that keep
track of. all these components and use them correctly, let alone optimally, is an
extremely difficult job. For this reason, computers are equippcd with a layer of
software called the operating system, whose job is to manage all these devices
and provide user programs with a simpler interface to the hardware. These sys-
tems are the subject of this book,

The placement of the operating system is shown in Fig. 1-1. A1 the bottom is
the hardware, which, in many cases, is itself composed of two or more levels {or
layers). The lowest level contains physical devices, consisting of integrated cir-
cuit chips, wires, power supplies, cathode ray tubes, and similar physical devices.
How these are constructed and how they work are the provinces of the electrical
engineer.

Next comes the micreoarchitecture level, in which the physical devices are
grouped together to form functional units. Typically this level contains some reg-
isters internal to the CPU (Central Processing Unit) and a data path containing an
arithmetic logic unit. In each clock cycle, one or two operands are fetched from
the registers and combined in the arithmetic logic unit (for example, by addition
or Boolean AND). The result is stored in one or more registers. On some
machines, the operation of the data path is controlled by software, calied the
microprogram. On other machines, it is controlled directly by hardware circuits,

1
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Figure 1-1. A computer system consists of hardware, system programs. and ap-
phication programs.

The purpose of the data path is to execute some set of instructions. Some of
these can be carried out in one data path cycle; others may require multiple data
path cycles. These instructions may use registers or other hardware facilities.
Together, the hardware and instructions visible 1o an assembly language program-
mer form the ISA (Instruction Set Architecture) level. This level is often calied
machine language.

The machine language typically has between 50 and 300 instructions, mosily
for moving data around the machine, deing arithmetic, and comparing vatues. In
this level, the input/output devices are controlled by loading values into special
device registers. For example, a disk can be commanded to rcad by loading the
values of the disk address, main memory address, byte count, and direction (read
or writc) into its registers. In practice, many more parameters are necded. and the
status returned by the drive after an operation is highly complex. Furthermore. for
many /O (Input/Output) devices, timing plays an important role in the program-
ming.

To hide this complexity, an operating system is provided. It consists of a
layer of software that (partially) hides the hardware and gives the programmer a
more convenient set of instructions {0 work with. For example, read block from
file is conceptually simpier than having to worry about the details of moving disk
heads, waiting for them to settle down, and so on.

On top of the operaling system is the rest of the system software. Here we
find the command interpreter (shell). window systems, compilers, editors, and
similar application-independent programs. It is important to realize that these
programs are definitely not part of the operating system, even though they are typ-
ically supplied by the computer manufacturer. This 1s a crucial, but subtle, point.
The operating systern is (usually) that portion of the software that runs in kernel
mode or supervisor mode. It is protected from user tampering by the hardware
(ignoring for the moment some older or low-end microprocessors that do not have



hardware protection at all). Compilers and editors run in user mode. If a user
does not like a particular compiler, het is free to write his own if he so chooses:
he is not free to write his own clock interrupt handler, which is part of the operat-
ing system and is normally protected by hardware against attempts by users to
moedify it.

This distinction, however, is sometimes blurred in embedded systems {which
may not have kernel mode) or interpreted systems (such as Java-based operating
systems that use interpretation, not hardware, to separate the components). Still,
for traditional computers, the operating system ts what runs in kernel mode.

That said, in many systems there are programs that run in user mode but
which help the operating system or perform privileged functions. For example,
there is often a program that allows users to change their passwords. This pro-
gram 1s not part of the operating system and does not run in kernel mode, but it
clearty carries out a sensitive function and has to be protected in a special way,

In some systems, this idea is carried to an extreme form, and pieces of what is
traditionally considered to be the operating system (such as the file system) run in
user space. In such systems, it is difficult to draw a clear boundary. Everything
running in kernel mode is clearly part of the operating system, but some programs
running outside it are arguably also part of it, or at least closely associated with it.

Finally, above the system programs come the application programs. These
programs are purchased or written by the users to solve their particular problems.
such as word processing, spreadsheets, engineering calculations, or storing infor-

mation in a database.

1.1 WHAT IS AN OPERATING SYSTEM?

Most computer users have had some experience with an operating systern, but
it is difficult to pin down precisely what an operating system is. Part of the prob-
lem is that operating systems perform two basicatly unrelated functions, extendin g
the machine and managing resources, and depending on who is doing the talking,
you hear mostly about one function or the other. Let us now lock at both,

1.1.1 The Operating System as an Extended Machine

As mentioned earlier. the architecture (instruction set, memory organization,
1/0, and bus structure) of most computers at the machine language level is primi-
tive and awkward to program, especially for input/output. To make this point
more concrete, let us briefly look at how floppy disk I/O is done using the NEC

t "He™ should be read as “he or she™ throughout the book.
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PD¥765 compatible controlier chips used on most Intel-based persml_al con}}}yters.
(Throughout this book we will use the terms “floppy dij;k" and “d?sketl:e inter-
changeably.} The PD763 has 16 commands, each specified by Ioaddmg betwegr_l 1
and 9 bytes into a device register. These commands are for readn_lg_ and wriling
data, moving the disk arm, and formatting tracks, as well as inittalizing, sensing,
resetting, and recalibrating the coatrolier and the drives. ‘

The most basic commands are read and write, each of which requires 13
parameters, packed into 9 bytes. These parameters specity such items as the
address of the disk block to be read, the number of sectors per track. the recording
mode used on the physicat medium, the interseclor gap spacing, and what to do
wilth a deleted-data-address-mark. If you do not understand this mumbo Jumba,
do not worry; that is precisely the point—it is rather csoteric. When the operation
is completed, the controller chip returns 23 status and error fields packed into 7
bytes. As if this were not enough, the floppy disk programmer must also be con-
stantly aware of whether the motor is on or off. If the motor is off. it must be
turned on (with a long startup delay) before data can be read or written. The
maotor cannot be left on toe long, however. or the floppy disk will wear out. The
programmer 1s thus forced to deal with the trade-off between long startup delays
versus wearing out floppy disks (and losing the data on them).

Without going into the rea! details. it should be clear that the average pro-
grammer probably does not want to get too intimately involved with the program-
ming of floppy disks (or hard disks, which arc Just as complex and quite dif-
ferent). Instead, what the programmer wants is a simple, high-level abstruction (o
deal with. In the case of disks, a (ypical abstraction would be that the disk con-
tatns a collection of named fijes. Each file can be opened for reading or writing,
then: read or written, and finally closed. Details such as whether or not recording
should use modified frequency modulation and what the current state of the motor
is should not appear in the abstraction presented to the user,

The program that hides the truth about the hardware fron the programmer and
presents a nice, simple view of named files that can be read and written is, of
course, the operating system, Just as the operating system shietds the programmer
from the disk hardware and presents a simple file-oriented interface. it also con-
ceals a lot of unpleasant business COncerning interrupts, timers, memory manage-
ment. and other low-level features. In each case, the abstraction offered by the
operating system is simpler and easier (o use than that offered by the underlying
hardware.

In this view, the function of the operating system 1s to present the user with
the equivalent of an extended machine or virtual machine that is easier o pro-
gram than the underlying hardware. How the operating system achieves this goal
is a long story, which we will study in detail throughout this book. To summarize
it in a nutshell, the operating system provides a variety of services that prograras
can ohtain using special instructions called system calls. We will examine some
of the more common system calls later in this chapter.
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1.1.2 The Operating System as a Resource Manager

The concept of the operating system as primarily providing its USETS with a
convenient interface is a top-down view. An alternative, bottom-up, view holds
that the operating system is there to manage all the pieces of a complex system.
Modem computers consist of processors, memories, timers, disks, mice, network
intertaces. printors, and a wide variety of other devices. In the alternative view,
the job of the operating system is to provide for an orderly and controlled alloca-
tion of the processors. memories, and I/Q devices among the various programs
competing for them.

imagine what would happen if three programs running on some computer all
tried to print their output simulaneously on the same printer. The first few lines
of printout might be from program ), the next few from program 2, then some
from program 3, and so forth. The result would be chaos. The operating system
can bring order to the potential chaos by buffering atl the vutput destined for the
printer on the disk. When one program is finished. the operating system can then
copy its output from the disk file where it has been stored 1o the printer. while at
the same time the other program can continue generaling more output, oblivious
lo the fact that the output is not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing and
proiecting the memory, O devices, and other resources is even greater, since the
users right otherwise interfere with one another. Tn addition. users often need to
share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of
who is using which resource, to grant resource requests, to account for usage, and
to mediate conflicling requests from different programs and users.

Resource management includes multiplexing {sharing} resources in two ways:
m time and in space. When a resource is time multiplexed. different programs or
users take turns using it. First one of them gets to use the resource. then another,
and so on. For example, with only one CPU and multiple programs that want to
run on it, the operating system first allocates the CPU to one program, then after it
has run long enough, another one gets to use the CPU, then another, and then
eventuaily the first ope again. Determining how the resource is time multi-
plexed—who goes next and for how long—is the task of the operating system.
Another example of time multiplexing is sharing the printer. When multiple print
jobs are queued up for printing on a single printer, a decision has 10 be made
about which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the custo-
mers taking turns, each one gets part of the resource. For example, main memory
is normally divided up among several running programs, so cach one can be
resident at the same time (for example, in order (o take turns using the CPU].
Assuming there is enough memory to hold multzple programs, it is more efficient
to hold several programs in memory at once rather than give one of them all of it,
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cspectally it 1t only needs a smali Fraction of the total. OfF course, this raises
wsues of fatrness, protection, and so on. and 1t is up (0 the operating system o
saalve them.  Another resource that s space muluplexed is the (hard) disk. 1n
many systems a single disk can hold files from many users at the same time.
ﬁllu'cuti-ng disk spm:;: and keeping track of who is using which disk blocks is a
typical operating system resource management task.

1.2 HISTORY OF OPERATING SYSTEMS

Operating systems have been evolving through the yeurs., In the following
sections we will briefly look al a few of the highlights. Since operaling sysiems
have historically been closely tied o the architecture of the computers on which
they run, we will look ar successive generations of computers 10 sce what their
operating svstems were like. This mappng of operating system gencrations Lo
computer generations is crude, but it does provide some structure where thers
would otherwise be none.

The first true digital computer was designed by the English mathematician
Charles Babbage (1792-1871). Although Babbage spent most of his life and lor-
tune trying to build his “analytical engine.” he never Zot it working properiy
because it was purely mechanical, and the technology of his day could not pro-
duce the required wheels. gears, and cogs 10 the high precision that he needed.
Needless to say, the analytical engine did not have an Operating system,

AS an interesting historical aside, Babbage realized that he would need
software for his analytical engine, so he hired a voung woman named Ada
Lovelace. who was the daughter of the famed British poet Lord Byron, as the
world’s first programmer. The programming language Ada® is named after her,

1.2.1 The First Generation (1945-55) Vacuum Tubes and Plagboards

After Babbage’s unsuccesstul efforts. little progress was made in constructing
digital computers unti) World War 1. Around the inid- 19405, Howard Aiken at
Harvard, John von Neumann at the Institote for Advanced Study in Princeton, J.
Presper Eckert and William Mauchley at the University of Pennsylvania. and
Konrad Zuse in Germanyv, among others, all succeeded in building calculating
engmes. The first ones used mechanical refays but were very slow, with cycle
times measured in seconds, Relays were later replaced by vacuum tubes. These
machines were enormous. filling up entire rooms with tens ol thousands of
vacuum tubes, but they were still mitlions of times slower than even the cheapest
personal compulers avatlable today.

In these early days. a single group of people designed, built, programmed,
operated, and maintained each machine. All programming was done in absolute
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machine language, often by wiring up plugbourds to control the machine’s hasic
funct g Programming janguages were unknown {even usxemb]}i language was
unknown). Operating systems were unheard of. The usual mode of operation was
for the programmer to sign up for g block of time on the signup sheet on the wall,
then come down 1o the machine room, insert his or her plugboard into the com-
puter, and spend the next few hours hoping that none of the 20,000 or so vacuum
tubes would burn out during the run. Virtwally all the problems were straightfor-
ward numerical calculations, such as grinding out tables of sines. cosines, and log-
arithms.

By the early 1950s, the rouiine had improved somewhat with the introduction
of punched cards. It was now possible to write programs on cards and read them
in instead of using plugboards; otherwise, the procedure was the same,

1.2.2 The Second Generation (1955—65) Transistors and Batch Systems

The introduction of the transistor in the mid-)950s changed the picture radi-
cally. Computers became reliable enough that they could be manufactured and
sold to paying customers with the expectation that they would continue to func-
tion long enough to get some useful work dome. For the first time, there was a
clear separation between designers, buildess, operators. programmers, and mainte-
nance personnel.

These machines, now called mainframes, were locked away in specially air
conditioned computer rooms, with staffs of professional operators to run them.
Only big corporations or major government agencies or universities could afford
the multimillion doltar price tag. To run a Job (ie. a program or set of pro-
grams}, a prograrmmer would first write Lthe program on paper (in FORTRAN aor
assembler), then punch it on cards. He would then bring the card deck down to
the mput room and hand it to one of the operators and go drink coffee unti the
cutput was ready.

When the computer finished whatever job it was currently running, an opera-
tor would go over to the printer and tear off the output and carry it over 1o the ous-
put rgom, so that the programmer could collect it later. Then he would take one
of the card decks that had been brought trom the input room and read it in, If the
FORTRAN compiter was needed, the operator would have to get it from a file
cabinet and read it in. Much computer time was wasted while operators were
walking around the machine room.

Given the high cost of the equipment, it is nol surprising that people quickly
looked for ways 1o reduce the wasted time. The solution generally adopted was
the batch system. The idea behind it was to collect a tray tull of jobs in the input
room and then read them onto a magnetic tape using a small (relatively) inexpen-
sive computer, such as the IBM 1401, which was very good at reading cards,
copying tapes, and printing output, but not at zl] good at numerical calculations,
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Other. much more expensive machines, such as the IBM 7094, were used for the
real computing. This situation is shown in Fig. 1-2.
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Fignre 1-2. An carly batch syswem. {a) Programmers bring cards o 1401, h)
1401 reads batch of jobs onto tape. (¢} Operator carrics inpul tape to 7094, (d)
7004 does computing. (e} Operator carries culput tape w 1400, (N 1400 prints
tutpuat.

After aboul an hour of collecting a batch of jobs, the tape was rewoend and
brought into the machine room, where it was mounted on a tape drive. The opera-
tor then loaded a special program (the ancestor of today's operating system).
which read the first job from tape and ran it. The output wus writien onto a sec-
ond rape. instead of being printed. After each job finished, the operating system
automatically read the next job from the tapc and began rupning it. When the
whole batch was done. the operator removed the input and output tapes, replaced
the input tape with the next batch, and brought the output tape 10 a 1401 for print-
iy off line (i.c.. not connected to the main campuier).

The structure of a typical input job is shown in Fig. 1-3. It started out with a
$JOB card. specitying the maximum run time in minutes. the account number to
be charged. and the procrammer’s name. Then came a $SFORTRAN card. telling
the operating system to load the FORTRAN compiler from the system tape. Tt
was tollowed by the program to be compiled, and then a SLOAD card, directing
the operating system to load the objcct progeam just compiled. {Compiled pro-
grams were oflen writien on scratch tapes and had 1o be loaded exphicitly.) Next
came the SRUN card, wlling the operating xystem to run the program with the
data following it. Finally, the $ENT card marked the end of the Job. These prim-
itive control cards were the forerunners of modern job control langunages and com-
mund interpreters,

Large second-generation computers were used mostly tor scientitic and
engineering calculations, such as solving the partial differential equations that
often occur in physics and engineering. They were largely programmed in FOR-
TRAN and assembly {anguage. Typical operating systems were FMS (the Fortrun
Momitor System) and 1BSYS, IBM's operaling system for the 7094,
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Figure 1-3. Structure of o typical FMS job.

1.2.3 The Third Generation (1965~1980) 1Cs and Multiprogramming

By the early 1960s, most computer manufaciurers had two distinet, and totally
incompatible, produoct lines. On the one hand there were the waord-oriented.
large-scale scientific computers, such as the 7094, which were used for numerical
calculattons in science and engineering. On the other hand, there were the
character-oriented, comimercial computers, such as the 1401, which were widely
used for tape sorting and printing by banks and insurance companics.

Developing and maintaining two completely ditferent product lines was an
expensive proposition for the manufacturers. Tn addition. many new computer
customers initially needed a smalt machine but later outgrew it and wanted a
bigger machine that would run all their old prograrus, but faster,

IBM attempted (o solve both of these problems at a single stroke by introduc-
ing the System/360. The 360 was a series of sottware-compatible inachines Tang -
ing from 1401-sized to much more powerful than the 7094. The machines dif-
fered only in price and performance (maximum memory, processor speed, number
of 1/} devices permitted, and so forth), Since all the machines had the same
architecture and instruction sct, programs written for one machine could rug on all
the others, at least in theory. Furthermore. the 36() was dexigned to handle both
scientific (i.e., numerical) and commercial computing. Thus a single family of
machines could satisfy the needs of all customers. [n subsequent vears, IBM has
come out with compatible successors to the 360 line, using more modern technol-
ogy, known as the 370, 4300, 3080, and 3090 series.
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The 300 was the first major computer line to use (small-scale) Integrated Cir-
cuits (ICs), thus providing a major price/performance advantage over the second-
generation machines, which were built up from individual transistors, [t was un
immediate success. and the idea ol a family of compalible compulters was soon
adopted by all the other major manutacturers. The descendants of these machines
are still in use at computer centers today. Nowadays they are ofien used for
managing huge databases (e.g.. for airline reservution sysicms) or as servers for
World Wide Web sites that must process thousands of requesis per second.

The greatest strength of the “one family ™ idea was simultancous!y its greatest
weakness. The intention was that all software, including the operating system,
O5%/360 had to0 work on all models. 1t had 10 run on small systems, which often
Just replaced 14015 for copying cards 1o tape, and on very jarge systems. which
often replaced 7094s for deing weather forccasting and other heavy computing. It
had 1o be good on systems with few peripherals and on systems with Mmany peri-
pherals. [t bhad 1o work in commercial environments and in scieniific environ-
ments. Above all, it bad to be efficient for a1l of these Jifferent uses.

There was no way that 1BM (or anybody else) could write o picce of softwure
o meet alf those conflicting requirements. The result was un enormous and
cxtraordinarily complex operating system, probably two to three orders of maygni-
tude larger than FMS. Tt consisted of millions of lines of assembly language writ-
ten by thousands of programmers, and conlzined thousands upon thousands of
bugs, which necessitated a continuous stream of new releases in an attempt to
correct them. Euch new release fixed some bugs and introduced new ones. so the
number of bugs probably remained constant in time.

One of the designers of O8/360. Fred Brooks. subsequently wrote a witty and
incisive book (Brooks, 1996) describing his experiences with 08/360. While it
would be impossible to summarize the book here. suffice it 1o say that the cover
shows a herd of prehistoric beasts stuck in o tar pit. The cover of Silberschatz, et
al. (2000) makes a similar point about operating systems being dinosaurs,

Despite its enormous size and probiems. (5/360 and the similar third-
generation operating systems produced by other computer manufacturers actually
satisfied most of their customers reasonably well. They also popularized several
key technigues absent in second-generation operating systems. Probably the most
important of these was multiprogramming, On the 7094, when the current job
paused to wait for a tape or other 1/Q operation to complete, the CPU simply sat
idle until the 1/O finished. With heavily CPU-bound scientific calculations, /O is
infrequent, so this wasted time is not significant. With commercial data process-
ing, the FO wait time can often be 80 or 90 percent of the fotal time. so something
had to be done to avoid having the (expensive) CPU be idle so much.

The solution that evolved was (0 partition memory into s¢veral picces. with a
different job in cach partition. as shown in Fig. 1-4. While one job was waiting
for 1/O (o complete, another job could be using the CPU. It enough jobs could be
held in main memory at once. the CPU could be kept busy nearly 100 percent of
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the time. Having muluple jobs safely in memory at once requires special
hardware to protect each job against snooping and mischief by the other ones, but
the 360 and other third-generation systems were equipped with this hardware.

Job 3 [‘\

Job 2 e
T~y Memory
Job 1 j=-"":  partitions
Cperating /’f
system

Figure 1-4. A multiprogramniing system with three jobs in memory.

Another major feature present in third-generation operating sysiems was the
ability to read jobs from cards onto the disk as soon as they were brought to the
computer room. Then, whenever a running job [mished, the operating system
could load a new job from the disk into the now-empty partition and run it. This
techntque is called spooling (from Simultaneous Peripheral Operation On Line)
and was also used for output. With spooling, the 1401s were no longer needed.
and much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scien-
tific calculations and massive commercial data processing runs, they were still
basically batch systems. Many programmers pined for the first-generation days
when they had the machine all to themseives for a few hours, so they could debug
their programs guickly, With third-generation systems. the time between submit-
ting a job and getting back the output was ofien several hours. so a single mis-
placed comma could cause a compilation 10 fail, and the programmer to waste
baif a day.

This desire for quick response time paved the way for timesharing. a variant
of multiprogramming, in which each user has an online terminal. [n a timesharing
system, 1f 20 users are logged in and 17 of them are thinking or talking or drinking
coffee, the CPU can be allocated in turn to the three jobs that want service. Since
people debugging programs usually issuc short commands (¢.g., compile a five-
page proceduret) rather than long ones (e.g., sort a million-record file), the com-
puter can provide fast, interactive service to a number of users and perhaps also
work on big batch jobs in the background when the CPU is otherwise idle. The
first serious timesharing system. CTSS (Compatible Time Sharing System), was
developed at M.LT. on a specially modificd 7094 (Corbatd et al.. 1962} How-
ever, timesharing did not really become popular until the NECEsSary predection
hardware became widespread during the third generation.

TWe will use the terms “procedure,” “subroutine.™ and “function’ interchangeably in this book.
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After the success of the CTSS system. MET. Bell Labs, and General Electric
(then @ onajor computer manulacturery decided o embark on the develfi}pmﬂn[ of a
“computer utility,” a machine that would support hundreds of simultaneous
hmeshanng users. Their model was the electricity distribution system-—when vou
need electric power, you just stick a plug in the wall, and within reason, as much
power as you need will be there. The designers of this system. known as MUL-
TICS (MULTiplexed Information and Computing Service). envisioned one
lhuge machine providing computing power for everyone in the Boston area. The
idea that machines far more powerful than their GE-645 mainframe would be sold
tor i thousand dollars by the millions only 30 years luter was pure science fiction.
Sort of like the idea of supersonic trans-Atlantic undersea trains now.

MULTICS was a mixed success. Bt was designed (0 support hundreds of users
on & achine only slightly more powerful than an [ntel 386-based PC. although 1t
hiad much more 1/0 capacity. This is not quile as Crazy as 1l sounds, since people
knew how to write small, efficient programs in those days, a skill that has subse-
quently been lost. There were many reasons that MULTICS did not thke over the
world, not the least of which is that it was written in PL/L and the PL/T compiler
was years late and barely worked at all when it finally arrived. In addition. M1 L-
TICS was enormously ambitious for its time. much like Charles Babbage™s analyt-
ical engine in the nineteenth century.

To make a long story short, MULTICS introduced many semunal ideas into the
computer literattre, bul turning it inlo a serious product and a major commercial
success was a lot harder than anyone had expected. Bell Labs dropped out of the
project, and General Electric guit the compuler business altogether. However,
M.LT. persisted and eventually g0t MULTICS working. Tt was ultimately sold as a
commercial product by the company that bought GE’s computer business
(Honeywell) and installed by abour 80 major companies and oniversitics world-
wide. While their numbers were small. MULTICS users were hercely loyal. Gen-
eral Motors, Ford, and the U.S. National Security Agency, for example, only shut
down their MULTICS systems in the late 1995, 30 years after MULTICS was
released.

For the moment. the concept of a computer utility has fizzled out but it may
well come back in the form of massive centralized Internet servers to which rela-
tively dumb user machines are attached. with most of the work happening on the
big servers. The motivation here is likely to be that most people do not want to
administrate an increasingly complex and finicky computer system and would
prefer to have that work done by a team of protessionals working for the company
running the server. E-commerce is already evolving in this direction, with various
companies running e-malls on multiprocessor servers io which stmple client
machines connect, very much in the spirit of the MULTICS design.

Despite its lack of commercial success, MULTICS had a huge influence on
subscquent operating systems. It is described in (Corbato et al,, 1972; Corbatd and
Vyssotsky, 1963; Daley and Dennis, 1968: Orgunick. 1972; and Saltzer, 1974). |t
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also has a still-active Web site, www.muldricians.org, with a great deal of informa-
tion about the system. its designers, and 1ts users.

Another major development during the third generation was the phenomenal
growth of minicomputers, starting with the DEC PDP-1 in 1961, The PDP-1 had
only 4K of 18-bit words, but at $120,000 per maching (less than 5 percent of th_c
price of a 7094), it sold like hotcakes, For certain kinds of nonnumerical work. it
was almost as fast as the 7094 and gave birth 1o a whole new industry. It was
quickly tollowed by a series of other PDPs (unlike 1BM’s family, all incompati-
ble) culminating in the PDP-11,

One of the computer scientists at Bell Labs who had worked on the MULTICS
project. Ken Thompson. subsequently found a small PDP-7 minicomputer that no
one was using and set out to write a stripped-down, one-user version of MULTICS.
This work later developed into the UNIx® operating system, which became popu-
lar in the academic world, with government agencies, and with many compantes.

The history of UNIX bhas been told cisewhere (e.g., Salus, 1994). Part of that
story will be given in Chap. 10. For now, suffice it 1o say. that because the source
code was widcly available, various organizations developed their own (incompati-
ble} versions, which led to chaos. Two major versions devcloped, System V.
from ATET, and BSD, (Berkeley Software Distribution) from the University of
California at Berkeley. These had minor variants as well. To make it possibie to
write programs that could ran on any UNIX system. [EEE developed a standard
- for UNIX, called POSIX. that most versions of UNIX now support. POSIX defines
a minimal system call interface that conformant UNIX systems must support. In
fact, some other operating systems now also support the POSIX interface,

As an aside, it is worth mentioning that in 1987, the author released a small
clone of UNIX, called MINIX, for educational purposes. Functionally, MINIX is
very similar to UNIX, including POSIX support. A book describing its internal
operation and listing the source code in an appendix is also available (Tanenbaum
and Woodhull, 1997). MINIX is available for free {including ail the source code)
over the Internet at URL www.cs.vie.nl/~ast/miniy him.

The desire for a free production (as opposed to educational) version of MINEX
led a Finnish student, Linus Torvalds, to write Linux. This system was developed
on MINIX and originally supported various MINIX features {e.g.. the MINIX file
system). It has since been extended in many ways but still retains a large amount
of underlying structure common to MINIX, and 10 UNIX {upon which the former
was based}. Most of what will be said about UNIX in this book thus applies to
System V, BSD., MINIX, Linux, and other versions and clones of UNIX as well.

1.2.4 The Fourth Generation {1980—Present) Personal Computers
With the development of LSI (Large Scale Integration) circuits, chips contain-

ing thousands of transistors on a square centimeter of silicon, the age of the per-
sonal computer dawned. In terms of architecture, personal computers (initially
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called microcomputers) were not all that difterent trom ininicomputers of .[’fl.l:?
PDP-11 class, but in terms of price they certainly were different. Where the nur.m
computer made it possible for a department i & company or Liﬂi\*’Ei’SiF:}-’ 0 huw: it
0wt compuler, the microprocessor chip made it possible for o single individual 1o
have his or her own personal computer.

In 1974, when Intel came out with the 808U, the first general-purpose $-bit
CPU, it wanted un operating system for the 8080, in part (0 be able to test it. Intel
asked one of its consultants, Gary Kildalt, o write one. Kildall and a friend first
built a controller tor the newly-released Shugart Associates 8-inch floppy disk and
hooked the floppy disk up to the 8080, thus producing the first microcomputer
with a disk. Kildall thein wrote a disk-based operating system catlted CP/M (Con-
trol Program for Microcomputers) for it. Since Intel did not think that disk-
based microcomputers had much of a future. when Kildall asked for the rights to
CP/M, Intel granted his request.  Kildall then formed a company. [hgital
Research. o further develop and sell CP/M.,

In 1977, Digital Research rewrote CP/M o make it suituble for running on the
many microcomputers using the 80680, Zilog Z80. and other CPU chips. Many
application programs were writien to run on CP/M. allowing it to completely
dominate the world of microcamputing for about 5 years.

In the early 1980s. [BM designed the IBM PC and looked around for software
to run on it. People tram IBM contacted Bill Gates to license his BASK inter-
preter. They alse asked him if he knew of an operating system to run on the PC,
Gates supgested that [BM contact Digital Rescarch. (hen the world™s dominant
operating systems company. Making what was surcly the worst business decision
in recorded history, Kildall refused 10 meet with IBM, sending a subordinate
instead. To make matiers worse, his lawyer even refused (o sign IBM's nondis-
closure agreement covering the not-yet-announced P°C, Consequently, IBM went
back 1o Gates asking if he could provide them with an OPCTaling sysiem,

When IBM came back. Gates realized that a local computer manutacturer,
Seattle Computer Products, bad a suitable aperating system. DOS (Disk Operat-
ing System). He approached them and asked to buy 1t {allegedly for $50.0000.
which they readily accepted. Gates then offered IBM DOS/BASIC package.
which IBM accepted. IBM wanted certain modifications, so Gates hired the per-
son who wrote DOS, Tim Palterson, as an employee of Gates™ fledgling company,
Microsoft, to make them. The revised system was renamed MS-DOS (MicroSoft
. Disk Operating System) and quickly came to dominate the 1BM PC markel, A
key factor here was Gates™ (in refrospect, extremely wise) decision (o sell MS-
DOS to computer companies for bundling with thetr hardware, vompared 1o
Kildal’s attemapt to sell CP/M to end users vne at 4 time {at teust wmitially),

By the time the IBM PC/AT came out jn 1983 with the Imel 80286 CPU.
MS5-DOS was firmly entrenched and CP/M was on its lust fegs, MS-DOS was later
widely used on the 80386 and 80486, Although the initial version of MS-DOS was
fairty primitive, subsequent versions inciuded more advanced features, including
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many taken from UNIX. (Microsoft was well aware of U]\:‘IX, even selling a
microcomputer version of it calted XENIX during the company’s early years.)

CP/M, MS-DOS, and other operating systems for early MICrocOINpULETS Were
all based on users typing in commands from the keyboard. That evepluaﬂ}f
changed due to research done by Doug Engelbart at Stanford Research Institute in
the 1960s. Engelbart invented the GUI (Graphical User Interface), pronounced
“gooey.” complete with windows, icons, menus, and mouse. These ideas were
adopted by researchers at Xerox PARC and incorporated into machines they built.

One day, Steve Jobs, who co-invented the Apple computer in his garage.
visited PARC, saw a GUI, and instantly realized its potential value, something
Xerox management famously did not (Smith and Alexander, 1988). Jobs then
embarked on building an Apple with a GUE This project led to the Lisa, which
wis oo expensive and failed commercially. Jobs® second attempt. the Apple
Muacintosh, was a huge success, not only because it was much cheaper than the
L.isa, but also bécause it was user friendly, meaning that it was intended for users
who not only knew nothing about computers but furthermore had absolutely no
intention whatsoever of learning.

When Microsoft decided to build a successor MS-DOS. it was strongly
influenced by the success of the Macintosh. It produced a GUl-based systen
called Windows, which originally ran on lop of MS-DOS ti.c.. it was more like a
shell than a true operating system). For about 10 years, from 1985 oy 1995, Win-
dows was just a graphical environment on top of MS-DOS. However, starting in
1995 a freestanding version of Windows, Windows 95, was released that incor-
porated many operating systemn features into i1, using the underlying MS-DOS SVS-
tem only for booting and running old MS-DOS programs. in 1998, a slightly
maodified version of this system, called Window s OR was released. Nevertheless,
hoth Windows 95 and Windows 98 still contiin i large damount of 16-bit [niel
wssembly language.

Another Microsoft operating system i Windows NT (NT stands for New
Technology), which is compalible with Window s 95 1 a cerain level, but a com-
plete rewrite from scraich iternadly. Ieis @ fuil 32-hit system. The lead designer
for Windows NT was Duvid Cutier. who was also one of the designers of the
VAX VMS operating system. so some ideus from VMS ure present in NT. Micro-
soft expected that the first version of NT would Kill off MS-DOS and all other ver-
sions of Windows since it was a vintly superior system, but it fizzled, Only with
Windows NT 4.0 did it finally cauch on in o g way. especialty on COTpOTale net-
works. Version 5 of Windows NT was renamed Windows 2000 1in early 199y, It
was infended to be the successor 1w botly Windows 98 and Windows NT 4.0. That
did not quite work out cither. o Microsolt came out with yot another version of
Windows 98 called Windows Me (Millenninm edition).

The other major contender in the personad computer world is UNIX (and iis
various derivatives). UNIX is strongest on workstations and other high-end com-
puiers. such as network servers. It is especially popuiar on machines powered by
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high-pertormance RISC chips. On Pentium-based computers, Linux i1s becoming
a popular alternative to Windows for students and increasingly many Cl:.)l*pffrzlte
users. (As an aside, throughout this book we will use the term “Pentium™ to
mean the Pentrum [, [1, 1{i. and 4.)

Although many UNIX users, especially experienced programmers, prefer a
command-based nterface to a GUIL, nearly all UNIX systems support a windowing
system called the X Windows system produced at M.I.T. This system handles the
basic window management, allowing users to creale, delete, move. and resize
windows using 4 mouse. Often & complete GUI, such as Motif, is available © run
on fop of the X Windows system giving UNIX a look and feel something like the
Macintosh or Microsoft Windows. for those UNIX users who want such a thing.

An interesting development that began taking place during the mid-1980s is
the growth of networks of personal computers running network operating sys-
tems and distributed operating systems i Tanenbaum and Van Steen. 2002). In
@ network operating svstem, the users are aware of the existence of multiple com-
puters and can log in to remote machines und copy files from one machine to
another. Each machine runs its own local operating system and has its own local
user (or users ).

Network operating systems are not tundamentally different from single-
processor operating systems. They obviously need a network interface controller
and some low-level software to drive i, as well as programs to achieve remote
login and remote file access, but these additions do not change the cssential struc-
ture of the operating system.

A distributed operating system, in contrast. is one that appears Lo 118 USers as a
traditional uniprocessor system, even though it is actually composed of multiple
processors. The users should not be aware of where their programs are being run
or where their files are iocated; that should ul! be handled automatically and effi-
ciently by the operating system.

True distributed operating systems reguire nwore than Just adding a littte code
0 4 uniprocessor operating system, because distributed and centratized SYSLEmS
differ in critical ways. Distributed systems. for example. often allow applications
(0 run on several processors at the same time. thus requiring more complex pro-
cessor scheduling algorithms in order 1o optimize the amount of parillelism,

Communication delays within the network often mean (hat these (and other)
algorithms must run with incomplete, outdated. or even incorrect information,
This situation is radically different from a single-processor system in which the
operating system has complete information about the syslern stale.

1.2.5 Ontogeny Recapitulates Phylogeny
Alter Charles Darwin's book The (riciin of the Species was published. the

German zoologist Ernst Haeckel stated (ha “Ontogeny Recapitulates Phylo-
geny.” By this he meant that the development of an embryo {ontogeny) repeats
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(t.c., recapitulates) the evolution of the species (phylogeny). In other-words, after
fertilization, a human cgg goes through stages of being a fish, a pig, and 80 0N
before turning into a human baby. Modern biologists regard this as a gross sim-
plification. but it still has a kernel of truth in it. N

Something analogous has happened in the computer industry. Each new
species {mainframe, minicomputer, personal computer, embedded computer,
smart card, etc.) seems to go through the development that its ancestors did. The
first mainframes were programmed entirely in asscmbly language. Even complex
programs, like compiiers and operating systems, were written in assembler, By
the time minicomputers appeared on the scene, FORTRAN, COBOL, and other
high-level languages were common on mainframes, but the new minicomputers
were nevertheless programmed in assembler (for lack of memory). When micro-
computers (early personal computers) were invented. they, too, were programmed
in assembler, even though by then minicomputers were also programmed in high-
level lunguages. Palmtop computers also started with assembly code but quickly
moved on to high-level languages (mostly because the development work was
done on bigger machines). The same is true for smart cards.

Now let us lock at operating systems. The first mainframes initially had no
protection hardware and no support for multiprogramming, so they ran simple
operating systems that handled one manually-loaded program at a time. Later
they acquired the hardware and operating system support to handle multiple pro-
grams at once, and then full timesharing capabilities.

When minicomputers first appeared, they also had no protection hardware and
ran one manualiy-loaded program at a time, even though multiprogramming was
well established in the mainframe world by then. Gradually, they acquired pro-
tection hardware and the ability (o run two or more programs at once. The first
microcomputers were also capable of running only one program at a time, but
later acquired the ability to muitiprogram. Palmtops and smart cards went the
same route.

Disks first appeared on large mainframes, then on MINICOMPpUters, microcom-
puters, and so on down the line. Even now, smart cards do not have hard disks,
but with the advent of flash ROM, they will soon have the equivalent of it. When
disks first appeared, primitive file systems sprang up. On the CDC 6600, easily
the most powerful mainframe in the world during much of the 1960s. the file Sy5-
tem consisted of users having the ability to create a file and then declare it to be
permanent, meaning it slayed on the disk even after the creating program exited.
To access such a file later, a program had to attach it with 2 special command und
give its password (supplied when the file was made permanent). In effect, therc
was a single directory shared by all users. It was up to the users to avoid file
name conflicts. Early minicomputer file systems had a single directory shared by
all users and so did earty microcomputer file systems.

Virtual memory (the ability to run programs larger than the physical memory)
had a similar development. It first appeared in mainframes, minicomputers,
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microcomputers and gradually worked its way down 1o smaller and smaller sys-
tems. Networking had a similar history,

In all cases, the software development was dictated by the technology. The
first microcomputers, tor example, had something like 4 KB of memory .:md no
protection hardware. High-level languages and multiprogramming were simply
too much for such a tiny system to handie. As the microcomputers evolved inw
modern personal compulters, they acquired the necessary hardware and then the
necessary software 1o handle more advanced features. It is likely that this
development will continue for years to come., Other fields may also have this
wheel of reincarnation. but in the computer industry it seems io spin faster,

1.3 THE OPERATING SYSTEM Z00O

All of this history and development has left us with a wide variety of operat-
ing systems. not all of which are widely known. In this section we will briefly
touch upon seven ot them. We will come back to some of these ditferent kinds of
systems faler in the book.

1.3.1 Mainframe Opecrating Systems

Al the bigh end are the operating systems for the mainframes. those rooln-
sized computers still found in major corporute data centers. These computers dis-
tinguish themselves from personal computers in terms of their 10 capacity. A
mainframe with 1000 disks and thousands of greabytes of data is not unusual: a
personal computer with these specifications would be odd indeed. Maintrames
are also making something of a comeback s high-cnd Web servers, servers for
large-scale electronic comnierce sites, and servers for business-lo-business tran-
SACLIONS,

The operating systems for mainframes are heavily oriented toward processing
many jobs at once, most of which need prodigious amounts of O, They tvpicalty
offer three kinds of services: batch. transuction processing. and tunesharing, A
batch system is onc that processes routine jobs wirthout any interaclive nser
present. Claims processing in an insurance company or sales reporting tor a chain
of stores is typically done in batch mode. Transaction processing svstems handle
large numbers of small requests. for example. check processing al a bank or wiir-
line reservations. Each unit of work is <muall, bul the system must handie hun-
dreds or thousands per second. Tiesharing svstems allow multiple remote users
(o run jobs on the computer ut once, such as quersiitg o hig datubase. These fune-
vons are closely related: muinframe operaling systems often pertorm all of them.
An example mainframe operating system is O8/390. a descendant of OS/360).
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1.3.2 Server Operating Systems

One level down are the server operating systems. They run on secvers. which
are either very large persanal computers, worksiations, or even mainframes. They
serve multiple users at once over a network and allow the users to share hardware
and sofiware resources. Servers can provide print service, file service, or Web
service. lniernet providers run many server machines to support their customers
and Web si1es use scrvers to store the Web pages and handle the incoming
requests. Typical server operating systemns are UNIX and Windows 2000, Linux
is also gaiming ground (or servers,

1.3.3 Multiprocessor Operating Systems

An increasingly common way (o get major-league computing power is to con-
nect multipte CPUs inlo a single system. Depending on precisely how they are
connected and what is shared, these systems are called parallel computers, multi-
computers. or multiprocessors. They need special operating systems, but often
these are vartations on the scrver operating sysiems. with special features for
communication and connectivity.

1.3.4 Personal Computer Operating Systems

The next category is the personal computer operating system. Their job is to
provide a good interface to a single user, They are widely vsed for word process-
ing, spreadsheets, and Internet access. Common examples are Windows 98, Win-
dows 2000. the Macintosh operating system, and Linux. Personal computer
operating systems are so widely known that probably little introduction is needed.
In fact. many people are not even aware that other kinds exist,

1.3.5 Real-Time Operating Systems

Another type of operating system is the real-time system. These systems are
characterized by having time as a key parameter. For example, in industrial proc-
ess control systems, real-time computers have to collect data about the production
process and use it to control machines in the factory. Often there are hard dead-
lines that must be met. For example, if 4 car is moving down an assembly Iine,
certain actions must take place at certain instanls of time. If a welding robot
welds too early or too late, the car will be ruined. If the action absolutely musr
occur at & certain moment {or within a certain range}. we have a hard reai-time
system.

Another kind of real-time system is a soft real-time system, in which missing
an occasional deadline is acceptable, Digital audio or multimedia systems fall in
ihis category. VxWorks and QNX are well-known real-time operating systemts,
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1.3.6 Embedded Operating Systems

Continuing on down to smaller and smaller svstems, we come o palm‘tn_}p
computers and embedded systems. A palmtop compuler or PDA (Personal Digi-
tal Assistant} is a small computer that fits in a shirt pocket and performs a small
number of functions such as an clectronic address book and memo pad. LEmbed-
ded systems run on the computers that control devices that are not generally
t]mugl-lt of as computers, such as TV sets. microwave ovens. and mobile tele-
phones. These often have some characteristics of real-time systems but also have
size, memory. and powcr restrictions that make them special. Examples of such
opcrating systems are PalmOS and Windows CE (Consumer Electronics).

1.3.7 Smart Card Operating Systems

The smallest operating systems run on smart cards, which are credit card-
sized devices containing a CPU chip. They have VEry SevVeTe Processing power
and memory constraints. Some of them can handle only a single funcuon, such as
electronic payments, but others can handle multiple functions on the same smur
card. Often these are proprietary systems.

Some smart cards are Java oriented. What this means is that the ROM on the
smart card holds an interpreter for the Java Virtual Machine (JVM). Java applets
{small programs) are downloaded to the card and are interpreted by the JVM
interpreter.  Some of these cards can handle multiple Java applets at the same
time, leading to multiprogramming and the need to schedule them. Resource
management and protection also become an issue when two or more applets arc
present al the same time. These issues must be handled by the (usually exiremely
primitive) operaling system present on the card.

1.4 COMPUTER HARDWARE REVIEW

An operating system is intimately tied 1o the hardware of the computer it runs
on. It extends the computer’s instruction set and manages its resources. To work,
It must know a great deal about the hardware, at least. about how the hardware
appears 1o the programmer,

Conceptually, a simple personal computer can be abstracted 0 1 model
resembling that of Fig. 1-5. The CPU, memaory, and /0 devices are all connected
by a system bus and communicate with one another over it. Modern personul
computers have a more complicated structure. involving multiple buses, which we
will look at later. For the time being, this model will be sufficient. In the totlow -
Ing scctions, we will bricfly review these components and examine some of the
hardware issues that are of concern to operating system designers.
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Figure 1-5. Some of the components of a simple parsonal compuler.

1.4.1 Processors

The “brain” of the computer is the CPU. 1t fetches instructions from memory
and executes them. The basic cycle of every CPU is to fetch the first instruction
from memory, decode it to determine its type and operands. execute i, and then
fetch, decode, and execute subsequent instructions. In this way, Programs are car-
ried out.

Each CPU has a specific set of instructions that it can execute. Thus a Pen-
tlum cannot execute SPARC programs and a SPARC cannot execute Pentium pro-
grams. Because accessing memory to get an instruction or data word takes much
longer than executing an instruction, all CPUs contain some registers inside to
hold key variables and temporary results. Thus the instruction set generally con-
tains instructions to load a word from memory into a register, and store a word
from a register into memory. Other instructions combine two operands from
Tegisters, memory, or both into a result, such as adding two words and storing the
result in a register or in memory,

In addition to the general registers used to hold variables and temporary
results, most computers have several special registers that are visible to the pro-
grammer. One of these is the program counter, which contains the memory
address of the next instruction to be feiched. Afier that instruction has been
fetched, the program counter is updated to point 1o its successor,

Another register is the stack pointer. which points 10 the top of the current
stack in memory. The stack contains one frame for each procedure that has been
entered but not yet exited. A procedure’s stack frame holds those mput parame-
ters, local variables, and temporary variables that are not kept in registers.

Yet another register is the PSW (Program Status Word). This register con-
tains the condition code bits., which are set by comparison instructions, the CPU
prierity, the mode (user or kernet), and various other contro! bits. User PIOZFANLS
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may norimally read the entire PSW but typically may write only same of its ficlds,
The PSW plays an important rele in system calls and 1O, _

The opecrating system must be aware of all the registers. When time muofti-
plexing the CPU, the operating system will often stop the running program to
(re)start another one. Every time if stops a running program, the operating system
must save all the registers so they can be restored when the program runs later.

To 1mprove performance. CPU designers have long abandoned the simple
model of fetching, decoding, und executing one instruction at a time. Many
modern CPUs have facilitics for executing more than one instruction at the same
time. For example. &« CPU might have separate fetch, decode. and execute units,
50 that while it was executing instruction n. it could also be decoding instruction
n+ | and fetching instruction » + 2. Such an organization is called a pipeline
and is itlustrated in Fig. 1-6(a) for a pipeline with three stages. Longer pipelincs
are commaon. In most pipeline designs, once an instruction has been tetched into
the pipeline, it must be executed, even if the preceding instruction was a condi-
tonal branch that was taken. Pipelines causce compiler writers and operating sys-
tem writers great headaches because they expose the cormplexities of the underty-
ing machine to themn.

Exertte
] unit
Fetch Crecode
L unit [ unit
: Execute
Fetch Decode Execute Haolding .
Lt — unit ] urit ouffer unn
Fetch | - Decode
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Execute
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{ay ' (r)

Figure 1-6. (a} A three-stage pipcline, (b) A superscalar CPL,

Even more advanced than a pipeline design is & superscalar CPU. shown in
Fig. 1-6(b). In this design, muliple cxccution units are present, for example, one
for integer arithmetic, one for floating-point arithmetic, and one for Roolean
operations. Two or more instructions are fetched a1 once., decoded, and dumped
into a holding buffer until they can be execuied. As soon as 2n execution unit is
tree. it looks in the holding buffer to see if there is an instruction it can handie.
and 1 50, it removes the instruction from the buffer and exccutes i, An implica-
tion of this design is that program instructions are often executed out of order,
For the most part, it is up 1o the hardware to make sure the result produced is the
same one a sequential implementation would have produced. but an annoying
amount of the complexity is foisted onto the operating system, as we shall see.

Most CPUs, except very simple ones used in cmbedded systems, have iwo
modes, kernel mode and user mode. as mentioned eardier. Usually a bit in the
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PSW controls the mode. When running in kernel mode, the CPU can execule
every instruction in its instruction set and use every feature of the hardware, The
operating system runs in kernel mode, giving it access to the ufmplete hardware.

In contrast, user programs run in user mode, which permits only a4 subset of
the instructions te be executed and a subset of the features to be accessed. Gen-
erally, all instructions involving IO and memory protection are disallowed in user
maode. Setting the PSW mode bit to kernel mode s also forbidden, of course.

To obtain services from the operating system, a user program must make a
system call, which traps into the kemel and invokes the operating system. The
TARAP instraction switches from user mode to kernel mode and starts the operating
system. When the work has been completed. cantrol is returned to the user pro-
gram at the instruction following the system call. We will explain the details of
the system call process later in this chapter. As a note on typography, we will use
the lower case Helvetica font to indicate system calis in running text, like this:
read,

It ts worth noting that computers have traps other than the instruction for exe-
cuting a system call. Most of the other traps are caused by the hardware to warn
of an exceptional situation such as an attempt to divide by 0 or a floating-point
underfiow. In ail cases the operating system gets control and must decide what to
do. Sometimes the program must be terminated with an error. Other times the
error can be ignored {an underflowed number can be set to 0). Finally, when the
program has announced in advance that it wants to handle certain kinds of condi-
tions, control can be passed back to the program to let it deal with the problem.

L4.2 Memory

The second major component in any computer is the memory. Ideaily, a
memaory should be extremely fast {faster than executing an instruction so the CPU
is not held up by the memory). abundantly large, and dirt cheap. No current tech-
nology satisfies all of these goals, so a different approach is taken. The memory
system iIs constructed as a hierarchy of layers. as shown in tig. I-7.

The top layer consists of the registers internal to the CPU. They are made of
the same material as the CPU and are thus dust as fast as the CPU. Conscquently,
there is no delay in accessing them. The Slorage capacity available in them is typ-
1cafly 32 x 32-bits on & 32-bit CPU and 64 x 04-bits on a 64-bit CPU. Less than |
KB in both cases. Programs must manage the registers (i.e.. decide whal to keep
in them) themselves, in software.

Next comes the cache memory, which is mostly controlled by the hardware.
Main memory is divided up into cache lines, typically 64 bytes, with addresses O
to 63 in cache line 0, addresses 64 to 127 in cache line 1. and so on. The mosi
heavily used cache lines are kept in a high-speed cache located inside or very
close 10 the CPU, When the program needs to read a memory word, the cache
hardware checks (o sec if the line needed is in the cache. If it is, called a cache
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Typical access time Typical capacity
1 nsec Reqgisters =1 K8
2 nse I Cache iMB
10 nsec Main mamary 64-512 MB
10 mseg Magnetic disk 5-50 GB
100 sec Magnetic tape 20-100 GB

Figore 1-7. A ypical memuory hicrarchy. The numbers are very rough approximations,

hit. the request 15 satished from the cache and no memory request is semt aver the
bus (0 the main memory. Cache hits normally take about two clock cycles
Cache misses have to go to memory, with a substantial time penalty. Cache
mermory is limited in size due to ils high cost. Some machines have two or even
three levels of cache, each one slower and bigger than the one before it.

Main memory comes next. This is the workhorse of the memory system,
Main memory is often called RAM (Random Access Memory). Old timery
sometimes call it core memory, because computers in the 19505 and 1960s used
tiny magnetizable ferrite cores for main memory. Currently, memories are tens to
hundreds of megabytes and growing rapidly. Ail CPU requests that cannot he
satisfied out of the cache go to main memory.

Next in the hierarchy 1s magnetic disk (hard disk}. Disk sworage is two orders
of magnitude cheaper than RAM per bit and often two orders of magnitude larger
as well. The only problem is that the time to randomly access data on it is close
to three orders of magnitude slower. This low speed is due o the fact that a disk
is @ mechanical device, as shown in Fig. 1-8.

A disk consists of one or more metal platters that rotate al 5400, 7200, or
10,800 rpm A mechanical arm pivots over the platiers from the corer. similar to
the pickup arm on an old 33 rpm phonograph for playing vinyl records. Informa-
tion is written onto the disk in a series of concentric circles. Al any given anm
position, each of the heads can read un annular region called a track. Together.
all the tracks for a given arm position form a eylinder.

Each track is divided into some number ot sectors. typically 512 bytes per
sector. On modern disks, the outer eylinders contain more sectors than the inner
ones. Moving the arm from one cylinder to the next one takes about 1 msec.
Moving it to a random cylinder typically takes 5 msec to 10 msec. depending on
the drive. Once the arm 1s on the correct track, the drive must wait for the needed
5eCtor to rotate under the head, an additional delay of 5 msec 10 10 msec, depend-
ing on the drive’s rpm. Once the sector is under the head. reading or writing
occurs at a rate of 5 MB/sec on low-end disks 10 160 MB/sec on faster oncs.
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~— Read/write head {1 per surface)

Surface 7 . C A
e i 1
Surface 6 - =—
Surface 5 ..
Surface 4 —
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Cirection of arm mation

Surface 2 7
Sudace 1-.
Surface 0 — 7

Figare 1-8. Soucture of a disk drive,

The final layer ir the memory hicrarchy is magnetic tape. This medium is
often used as a backup for disk storage and for holding very large data sets. To
access a tape, it must first be put into a tape reader, either by a person or a robot
(automated tape handling is common at nstallations with huge databases). Then
the tape may have (o be spooled forwarded to get to the requested block. Al in
all, this could take minutes. The big plus of tape is that it is exceedingly cheap
per bit and removable, which is important for backup tapes that must be stored
off-site in order to survive fires, floods, earthquakes, etc.

The memory hierarchy we have discussed is typical, but some instaliations do
not have all the lavers or have a few different ones (such as optical disk). Still, in
all of them, as one goes down the hierarchy, the random access time increases
dramatically, the capacity increases equally dramatically, and the cost per bit
drops enormously. Conscquently, it is likely that memory hierarchies will be
around for years to come.

In addition to the kinds of memory discussed above, many computers have a
small amount of nonvolatile random access memory. Unlike RAM, nonvolatile
memory does not lose its contents when the power is switched off. ROM (Read
Only Memory) is programmed at the factory and cannot be changed afterward. It
15 fast and inexpensive. On some computers, the bootstrap loader used to start the
computer is contained in ROM. Also, some /O cards come with ROM for han-
dling low-level device control.

EEPROM (Electrically Erasable ROM) and flash RAM are also nonvola-
tile, but in contrast to ROM can be erased and rewritten. However, writing them
takes orders of magnilude more time than writing RAM, =0 they are used in the
same way ROM is, only with the additional feature thal it is now possible to
correct bugs in programs they hold by rewriting them in the field,

Yet another kind of memory is CMOS, which is volatile, Many computers
use CMOS memory to hold the current time and date. The CMOS memory and



26 INTRODUCTION CHAP.O !

the clock circuit that increments the time in it are powered by a sinall 1t‘saurr}f. N
the time iy correctly updated, even when the comiputer ix unplugred. I he CMOS
mcmory can also hold the contiguration parameters, such as which disk to boot
from. CMOS 1s used bevause it draws so little power that the original factory-
installed battery often lasts for several years. However. when it begins to Iml the
computer can appear 10 have Alzheimer's disease, forgetting things thar it has
known for years, like which hard disk to hoot from.

Let us now focus on main memory for a little while. 1t is often desirable o
hold multiple programs in memory at once. If one program is blocked watting for
a disk read to complete, another program cun use the CPL. giving u better CPU
utilization. However, with two or more programs in main memory at oace, two
problems must be solved:

I. How to protect the programs from one another and the kerne! from
them all.

2. How to handle relocation.

Many solutions are possible. However, all of theny involve equipping the CPL!
with special hardware.

The first problem is obvious. but the second ane is u %t more subtle. When
program 1s compiled and linked, the compiler and linker G40 not know v here i
physical memory it will be loaded when it is cxecuted. For this reason. they usu-
ally assuroe it will start at address (1, and just pul the first instruction there, Sup-
puse thal the first instruction fetches a word Tom memory address HEOO, Now
suppose that the entire program and data are loaded sarting at uddress SO0,
When the first instruction executes, it will fi1il because it will reference the wornd
at 10000, instead of the word at 60000 Tu olve this problem. we need to either
relocate the progrumi at load time., Finding alt the addresses and maodifying thei
{which is doable. but cxpensived. or have relfocition done on- the. Fly durimy execu
tion.,

The simplest solution is ~hown in Fig. 1-9(a). In this Bgure we see i com
puter equipped with two speciel registers, the base register and (he limit register.
(Please note that in this book. nimbers beginning with O are in hexadecimal -
the C language convention. Similurfyv, numbers begioming with a leading zero are
in octal.) When a program is run. the base FCZISICT 15 SeL o poing (o the start of -
program text and the limir register tells how large the combinid Pragranm (el il
data are. When an instruction is to be etehed. the hardweire checks to see i the
program counter is less than the limit register, and i1 is. adids 1t 1o (e baee regrls-
ter and sends the sum to memory. Similarty. when the progrm wants to foerch o
data word (e.g., from address Q0003 the hurdware attonuibrcally adds the con
tents of the base register (e.g., 50,0003 ta that address and sends the suim {60000
to the memory. The base register makes it impossible tor & program to reterence
any part of memory below itself. Furthermore. the limit regrster makes it impos-



SEC. 1.4

sible fo reference any part of memory above tself

COMPUTER HARDWARE REVIEW

27

Thus this scheme solves both

the protection and the relocation problem at the cost of two new registers and a

siight increase in cycle time (to perform the limit check and addition).

Address Aegisters
whan
OxFFFFFFFF ngram_g
i5 running
Usser program Hig'::t'frs «—— Limil-2
i3 running ~— Base-2
Limit —- Limmt-2 —-
User program Base-2 - Liser-1 data
; - Ltrrut-1
— ona et Limit-1 =71 User program
Base Base-1 —= «— Base-1
Qperating Operating
System System
{a) {b}

Figure 1-9. {a) Use of one base-limit pair. The program can access memory
between the base and the limit. (b} Use of two base-limit pairs. The program
code 15 between Base-1 and Limit-1 whereas the data are between Base-? and
Limit-2.

The check and mapping resuit in converting an address generated by the pro-
gram, called a virtual address, into an address used by the memory, called a phy-
sical address. The device that performs the check and mapping 1s called the
MMU (Memory Management Unit). It is located on the CPU chip or close to it.
but is logically between the CPU and the memory.

A more sophisticated MMU is iliustrated in Fig. 1-9(b}. Here we have an
MMU with two pairs of base and limit registers, one for the progrant text and one
for the data. The program counter and all other references to the program text usc
pair | and data references use pair 2. Asa consequence. 1t 1s now possihle to have
multiple users share the same program with only one copy of it In memory. some-
thing not possible with the first scheme. When program 1 is running, the four
registers are set as indicated by the arrows to the left of Fig. 1-%b). When pro-
gram 2 is running, they are set as indicated by the arrows to the right of the figure.
Much more sophisticated MMUSs exist. We will study sone of them later in this
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book. The thing to note here is that managing the MMU must be an operating
system function, since users cannot be trusted to do i correctly.,

T Two aspects ot the memory syslem have a mujor effect on performance.
Frrst, caches hide the relatively slow speed of memory. When a program has heen
ranning for a while, the cache is tuil of that program’s cun:h:? lines, giving good
performance. However, when the operating system switches from one program to
another, the cache remains fuil ot the first program’s cache lines. The oncs
needed by the new program must be loaded one at a time from physical memory,
This operation can be 4 major performance hit if it happens too often.

Second, when switching from one program to another. the MMU registers
have to be changed. In Fig. 1-9(b). only four registers have to be reset, which is
not a problem, but in real MMUSs, many more registers have to be reloaded. either
cxplicitly or dynamically, as needed. Either way, it takes time. The moral of the
story 1s that switching from one program to another. calied a context switch. is un
cxpensive business. :

1.4.3 I/0 Devices

Memory is not the only resource that the operating systern must manage, 1/
devices also interact heavily with the operating system, As we saw in Fig. |5,
/O devices generalty consist of two parts: a controller and the device 1tself. The
controller is « chip or a set of chips on a plug-in board that physically controls the
device. It accepts commands from the operating system, for example, 1o read data
from the device, and carries them out.

In many cases, the actual control of the device is very complicated and
detailed, so it is the job of the controtler to present a simpler interface to the
operating system. For example, a disk controller might accept a command (o read
sector 11.206 from disk 2. The controiler then has 1o convert this lincar sector
number to a cylinder, sector, and hcad. This conversion may be complicated by
the fact that outer cylinders have more sectors than inner ones and that some bad
sectors have been remapped onto other ones. Then the controller has to determine
which cylinder the disk arm is on and give 1t a sequence of pulses to move in or
out the requisite number of cylinders. It has (0 wait until the proper sector has
rotated under the head and then start reading and storing the bits as they come off
the drive, removing the prcamble and computing the checksum. Finally, it has to
assemble the ncoming bits into words and store them in memory. To do all this
work, controllers often contain smail embedded computers thal are programmed
to do their work.

The other piece is the actnal device itself. Devices have fairly simple inter-
faces. both because they cannat do much and to make them standard. The latter ix
needed so that any IDE disk controller can handle any IDE disk, for cxumple.
IDE stands for Integrated Drive Electronics and is the standard type of disk on
Pentiums and some other computers. Since the actual device interface is hidden
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behind the controller, all that the operating system sees is the interface to the con-
trelter, which may be quite different from the interface to the device. _

Because each type of controller is different, different software is needed to
contral cach one. The software that talks to a controlier, giving it commands and
gecepling respanses, is called a device driver. Each controller manufacturer has
to supply a driver for each operating system it supports. Thus a scanner may
come with drivers for Windows 98, Windows 2000, and UNIX, for example.

To be used. the driver has to be put into the operating system so il can run in
kernel mode. Theoretically, drivers can run outside the kernel. but few current
systems support this possibility because it requires the ability to allow a user-
space driver to be able to access the device in a controlled way, a featurc rarely
supported. ‘There are three ways the driver can be put into the kernel. The first
way 1s to relink the kemnel with the new driver and then reboaot the system. Many
UNIX systems work like this. The second way is to make an entry in an operating
systemn file telling it that it needs the driver and then reboot the system. At boot
time, the operating system goes and finds the drivers it needs and loads them.
Windows works this way. The third way is for the operating system 10 be able to
accept new drivers while running and install them on-the-Tly without the need to
rebool. This way used to be rare but is becoming much more common now. Hot
pluggable devices, such as USB and 1EEE 1394 devices (discussed below) always
need dynamically loaded drivers.

Every controller hus a small aumber of registers that are used to communicate
with it. For example, a minimal disk controller might have registers for specify-
ing the disk address. mermory address. sector count, and direction (read or wrlte).
To activate the controller, the driver gets a command from the operaling sysiem,
then translates it into the appropriate values to write into the device registers.

On some computers, the device registers are mapped into the operating
system’s address space, so they can be read and written like ordinary memory
words. On such computers, no special O instructions are needed and LSCT Pro-
grams can be kept away from the hardware by not putiing these memory ad-
dresses within their reach (e.g., by using base and limit registers), On other com-
puters, the device registers are put in a special 170 port space, with each register
having a port address. On these machines, special IN and QUT instructions are
available in kernel mode 10 allow drivers to read and write the registers. The
former scheme eliminates the need for special /O instructions but uses up some
of the address space. The latter uses no address space but requires spectal instroc-
tions. Both systems are widely used.

Input and output can be done in three different ways. In the simplest method.
a user program issues a system call, which the kernel then translates into a pro-
cedure call to the appropriate driver. The driver then starts the I/(» and sits in a
tight loop continuously polling the device 1o see if it is done (usually there is some
bit that indicates that the device is still busy). When the I/O has completed, the
driver puts the data where they are needed (if any), and returns. The operating
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system then returns control to the caller. This method is called busy waiting and
has the disadvantage of tying up the CPU polling the device until it is finished.

The second method is for the driver to start the device and ask it to give an
interrupt wheen 1t 15 finished. At that point the driver returns. The operating sys-
1em then biocks the caller if need be and looks for other work to do. When the
controller detects the end of the transter. 1t generates an interrupt to signal com-
pletion,

Interrupts are very umportant In operating systems, so let us examine the idea
more closely. In Fig. 1-10(a) we sce a threc-step process for 1/0. In step 1. the
driver tells the controlier what to do by writing into its device registers, The con-
troller then starts the device. When the controfler has finished reading or writing
the number of byles it has been told to transfer. it signais the interrupt controller
chip using certain bus lines in step 2. if the interrupt controller is prepared (o
accept the interrupt {which it may not be if it is busy with a higher priority one}, i
asserts a pin on the CPU chip informing ii, in step 3. In step 4, the mterrupt con-
troller puts the number of the device on the bus so the CPU ¢an read it and know
which device has just finished (many devices may be ruhning at the same time).

Disk driva
t |_.-.-_

e ¢ Current instruction

;" Next instruction
CPU 3 imerrupt Disk
controller controller 3. Return
t 4l t EI [ 1. Interrupt

1 — 3 . — L i \ /

2. Dispatch f

o handlar \T
Interrunt handler ="
(a) )

Figure 1-10. {a) The steps in starting an 140 device and geltng an inerrupt. (bl
Interrupt processing involves taking the iInterrupt, running the imerrupt handler,
and returning to the user program.,

Once the CPU has decided to take the interrupt. the program counter and
PSW are typically then pushed onto the current stack and the CPU switched inta
kernel mode. The device number may be used as an index into part ol memaory 1o
find the address of the interrupt handler for this device. This part of memory is
called the interrupt vector. Once the inteirupt handler {part of the driver for the
interrupting device) has started, it removes the stacked program counter and PSW
and saves them, then queries the device to learn its status, When the handler is all
finished, it returns 1o the previously-running user program to the first instruction
that was not yet executed. These steps are shown in Fig. i-10(b).
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The third method for doing FO makes use of a special DMA  (Direct
Memory Access) chip that can control the flow of bits between memory and
some copireller without constant CPU tervention. The CPU sets up the DMA
chip, lelling it how many bytes (o transfer. the device and memory aFidresscs
involved, and the direction, and lets it go. When the DMA chip is done, it causes
an mterrupt, which is handied as described above. DMA and /O hardware in
general will be discussed in more detat!l in Chap. 5.

Interrupis can often happen at highly inconvenient moments, for cxample,
whilc another interrupt handler is running. For this reason, the CPU has a way to
disable interrupts and then reenable them later. While interrupts are disabled, any
devices that finish continue to assert their interrupt signals, but the CPU is not
mterrupted until interrupts are enabled again. If multiple devices finish while
interrupts are disabled. the interrupt controller decides which one 1o let through
first, usually based on static priorities assigned to cach device. The highest prior-
ity device wins.

1.4.4 Buses

The organization of Fig. 1-5 was used on minicomputers for years and also on
the original IBM PC. However, as processors and memories got Taster. the ability
of a single bus (and certainly the IBM PC bus) to handle all the traffic was
strained to the breaking point. Something had to give. As a result. additiona!
buses were added, both for faster /O devices and for CPU to memory traffic. As
4 consequence of this evolution, a large Pentium system currently looks some-
thing like Fig. 1-11.

This system has eight buses (cache, local, memory, PCI, SCSi, USB. IDE.
and ISAJ, each with a different transfer rate and function, The operating system
must be aware of ali of them for configuration and management. The two main
buses are the original TBM PC ISA (Industry Standard Architecture) bus and
its successor, the PCI (Peripheral Componeat Interconnect) bus. The ISA bus.
which was originally the IBM PC/AT bus, runs at .33 MHz and can transfer 2
bytes at once, for a maximam speed of 16.67 MB/sec. It is included for hackward
compatibility with old and slow /O cards. The PCi bus was invented by Intel us a
successor to the ISA bus. It can run ar 66 MHz and transfer 8 bytes at a time, for
a data rate of 528 MB/sec. Most high-speed /O devices use the PCI bus now.
Even some non-Intel computers use the PCI bus due 1o the large number of /O
cards available for it.

In this configuration, the CPU talks to the PC] bridge chip over the ocal bus,
and the PCI bridge chip talks to the memory over a dedicated memory bus. often
running at 100 MHz. Pentium systems have a level-1 cache on chip and a much
larger level-2 cuche oft chip, connected to the CPU by the cache bus.

In addition, this system contains three specidlized buses: IDE, USB. and
SCSI. The IDE bus is for attaching peripheral devices such us disks and CD-
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Figure 1-11. The structure of a turge Pentium system

ROMSs to the system. The IDE bus is an outgrowth of the disk controller interface
on the PC/AT and is now standard on nearly all Pentium-based systems for the
hard disk and often the CD-ROM.

The USB (Universal Serial Bus) was invented to attach all the slow /0
devices, such as the kKevboard and mouse, o the computer. It uses a small four-
wire connecior, two of which supply electrical power to the USB devices, USB s
a centralized bus in which a root device polls the 170 devices every ) msec to see
if they have any traffic. It can handle an aggregate toad of 1.5 MB/sec. All the
USB devices share a single USB device driver, making it unnecessary to install a
new driver for each new USB device, Consequently, USB devices van be added
to the computer without the need to reboot.

The SCSI (Smail Computer System Interface) bus is 4 hi gh-performance
bus tnicnded for fast disks, scanners, and other devices needing considerable
bandwidth. It can run at up to 160 MB/sec. It has heen present on Macintosh sys-
tems since they were invented and is also popular on UNIX and some Intel-hased
systems,

Yet another bus (not shown in Fig. I-11) is IEEE £394. Somelimes it is
catled FireWire, although strictly speaking, FireWire is the name Apple uses for
Its implementation of 1394. Like USB, IEEE 1394 is bit serial but is designed for
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packet transfers at speeds up to 50 MB/sce, making it useful for connecting digital
camcorders and similar multimedia devices to a computer. Unlike USB, I!—E_[:E-.
1394 does not have a central controiler. SCSI and IEEE 1394 face competition
from a faster version of USB being developed.

To work in an environment such as that of Fig. 1-11, the operating systermn has
10 know what 1s out there and contigure it. This requirement led Intel and Micro-
sof1 to design a PC system called plug and play, based on a similar concept first
implementied 10 the Apple Macintosh, Before plug and play, each I/O card had a
fixed interrupt request level and fixed addresses tor its IO registers, For exampte,
the keyboard was interrupt 1 and used I/0 addresses 0x60 to 0x64, the floppy disk
controller was interrupt 6 and used 1/0 addresses 0x3F0 to 0x3F7. and the printer
was interrupt 7 and used /O addresses 0x378 to 0x37A, and so on.

So far, so good. The trouble came when the user bought a sound card and a
modem card and both happened to use, say, interrupt 4. They would conflict and
would not work together. The solution was to include DIP switches or jumpers on
every I/Q card and instruct the user (o please set them to select an interrupt levei
and 1/Q device addresses that did not conflict with any others in the user’s system.
Teenagers who devoted their lives to the inlricacics of the PC hardware could
sometimes do this without making errors. Unfortunately, nobody else could. lead-
ing to chaos.

What plug and play does is have the system automatically collect information
about the 10 devices, centrally assign interrupt levels and I/O addresses, and then
tell each card what its numbers are. Very briefly, that works as follows on the
Pentium. Every Pentium contains a parentboard (formerly called a motherboard
before political correctness hit the computer industry). On 1the parenthoard is a
program called the system BIOS (Rasic Input Output System) The BIOS con-
tains low-level 1/O software, including procedures to read the keyboard, write to
the screen, and do disk /O, among other things. Nowadays, it is held in a flash
RAM, which is nonvolatite but which can be updated by the operating system
when bugs are found in the BIOS.

When the computer is booted, the BIOS is sturted. It first cheeks to see how
much RAM is installed and whether the keyboard and other basie devices are
installed and responding correctly. It starts out by scanning (he [SA and PCI
buses to detect all the devices attached to them. Some of these devices are ypi-
cally legacy (i.e., designed before plug and play was invented) and have fixed
interrupt levels and YO addresses (possibly set by switches or jumpers on the 10
card. but not modifiable by the operating system). These devices are recorded.
The plug and play devices are also recorded. I the devices present are different
from when the system was last booted, the new devices are contigured.

The BIOS then determines the boot device by trying a list of devices stored in
the CMOS memory. The user can change 1his list by entering a BIOS configura-
tion program just after booting. Typically, an artempt is made to boot from the
floppy disk. If that fails the CD-ROM is tried. If neither a floppy nor a CD-ROM
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Is present. the system is booted trom the hard disk. The tirst sector from the bool
device 15 read into memory and executed. This sector contains a program TFlu{
normally cxamines the partition table at the end of the boot sector to delermm‘e—
which partition is active. Then a secondary boot loader is read in tf‘{l}ln that parti-
uon. This toader reads in the operating systern from the active partition and starts
i,

The operating system then queries the BIOS to get the configuration informa-
ton. For each device, it checks to see it it has the device driver. I not, it asks the
uscr to insert @ floppy disk or CD-ROM containing the driver (supplied by the
device’s manufacturer). Once it has all the device drivers, the operaling system
loads them into the kerpel. Then it initializes its tables. creates whatever back-
ground processes are needed, and starts up a login program or GUI on each lermi-
nal. At least. this is the way it is supposed 1o work, In real life, plug and play s
trequently so unreliable that many peopic call it plug and pray.

1.5 OPERATING SYSTEM CONCEPTS

All operating systems have certain basic Concepts such as processes, memory,
and files that are central to understanding them, In the following sections, we will
look at some of these basic concepts ever so briefly. as an inroduction. We will
come back 1o each of them in great detail later in this hook. To Hlustrate these
concepts we will use examples from time (o time. generally drawn from UNIX.
Similar examples typically exist in other systers as well, however.

1.5.1 Processes

A key concept in all operating systems is the process. A process 1s basically
d program in execution. Associated with each process is ils address space. a hist
of memory locations from some minimum (usually () to some maximum. which
the process can read and write. The address space contzins the executable pro-
gram, the program’s data. and its stack. Also associaled with each Process is
some sct of registers. including the program counter. stack pointer. and other
bardware registers, and all the other information needed to run the program.

We will come back 10 the process concept in much more detail in Chap. 2. but
for the time being, the easiest way 1o get a good intuitive feel for a process is 1o
think about timesharing systems, Periodicaliy, the operating system decides 10
stop running one process and star running another, for example, because the first
one has had more than its share of CPU time in the past second.

When a process is suspended temporarily like this, it must later be restarted in
exactly the same state it had when it was stopped. This means that all information
about the process must be cxplicitly saved somewhere during the suspension. For
example, the process may have several files open for reading at once. Associated
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with each of these files is a peinter giving the current position {i.e., the number ot
the byte or record to be read next). When a process is temporarily suspendc.d. all
these potnters must be saved so that a read cafl executed after the process iy re-
started will read the proper data. In many operating systems, all the information
about each process, other than the contents of its own address space. is stored in
an operating system table called the process table, which is an array (or Jinked
list) of structures, one tor each process cusrently in existence.

Thus, a {suspended) process consists of its address space, usually called the
core image (in honor of the magnetic core memories used in days of vore), and its
process table entry, which contains its registers, among other things.

The key process management system calls are those dealing with the creation
and termination of processes. Consider a typical example. A process called (he
command interpreter or shell reads commands from a terminal. The user hay
just typed a command requesting that a program be compiled. The shell must
noW credle a new process that will run the compiler. When that process has fin-
1shed the compilation, it executes a system call to terminate itself,

II' 2 process can create one or more other processes (reterred o as child
processes) uand these processes in turn can create child processes, we guickly
arrive at the process tree structure of Fig. 1-12. Related processes that are
cooperating to get some job dome often necd to communicate with one another
and synchronize their aciivities. This communication is called interprocess com-
munication, and will be addressed in detail in Chap. 2.

) ©

Figure 1-12. A process tree. Process A created two chibd processes. # and ¢
Process B created three child processes, £, . and £/

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program
with a different one,

Occasionally, there is a nced 1o convey information to a running process that
is not sitting around waiting for this information. For example, a process that is
communicating with another process on a ditferent computer does so by sending
messages 1o the remote process over a computer network. To guard against the
possibility that a message or its reply is tost, the sender may request that its own
operating system notify it after a specified number of seconds, so that it can
retransmit the message if no acknowiedgement has been received yel. After set-
ting this timer, the program may continue doing other work.
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When the specified number of seconds has elapsed. the operating system
sends an alarm signal to the process. The signal causes the process to tem-
porarily suspend whatever it was doing, save its registers on the stack, and start
running & special signal handling procedure, for example, to retransmil a presum-
ably lost message. When the signal handler is done, the running process is re-
started in the state it was in just before the signal. Signals are the software analog
of hardware interrupts and can be gencrated by a variety of causes in addition 1o
tmers expiring. Many traps detected by hardware, such as executing an illegal
instruction or using an invalid address, are also converted inwo signais 1o the guilty
pProcess.

Each person authorized 1o usc a system is assigned o UID (User IDentifica-
tion) by the system adninistrator. Every process started has the UID of the per-
son who started it. A child process has the sume UID as its parent. Users can he
members of groups, each of which has a GID (Group IDentification .

One UlD. called the superuser {in UNIX1. has special power and may violale
many of the protection rules. In large installations, only the systemn administyator
knows the password necded to become supcruser, but many of the ordinary users
(especially students) devote considerable cffort (o trying to find flaws in the NV§-
tem that allow them to become superuser without the password.

We will study processes, interprocess communication. and related issues in
Chap. 2.

1.5.2 Deadlocks

When two or more processes are mteracting, they can sometimes get themn-
selves into a stalemate situation they cannot get out of . Such a silaation s called
a deadlock.

Deadlocks can best be introduced with a real-world example evervone 15 tam-
itiar with, deadlock in traffic. Consider the sitvation of Fip. I-13(a). Here four
buses are approaching an intersection. Behind each one are more buses (not
shown}. With a little bit of bad luck, the first four could all arnve at the intersec-
tion simultaneousty, leading 1o the situation of Fig. 1-13(b}, in which they are
deadlocked because nonc of them can go torward. Each one is blocking one of
the others, They cannot go backward due w0 other buses behind them. There is no
easy way oul.

Processes in a computer can experience an analogous situation in which they
cannot make any progress. For example, imagine a compuier with a tape drive
and CD-recorder. Now imagine that two processes cach need to produce o CD-
ROM from data on a tape. Process i requesis and is granted the tape drive. Nex
process 2 requesis and is granted the CD-recorder. Then prokcess 1 reguesty the
CD-recorder and is suspended until process 2 returns it Finally, process 2 re-

i

quests the tape drive and is also suspended because process 1 already has it, Here
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Figure 1-13, (a} A potential deadlock. (by An actual deadlock.

we have a deadlock from which there is no escape. We wili study deadlocks and
what can be done about them in detail in Chap. 3.

1.5.3 Memory Management

Every compuier has some main memory that it uses to hold executing pro-
grams. In a very simple operating system, only one program at a fime is in
memory. To run a second program, the first one has to be removed and the
second one placed in memory.

More sophisticated operating systems allow multiple programs to be in
memory at the same time. To keep them from interfering with one another (and
with the operating system). some kind of protection mechanism is needed. While
this incchanism has to be in the hardware, it is controlled by the operating system.

The above viewpoint is concerned with managing and protecting the
computer's main memory. A differenl. but equally important memory-related
issue, is managing the address space of the processes. Normally, each process has
some set of addresses it can use, typically running {from O up to some maximum.
In the simplest case, the muaximum amount of address spdce a process has is less
than the main memory. In this way, a process cun till up its address space and
there will be enough room in main memory to hold it all.

However, on many computers addresses arc 32 or 64 bits. giving an address
space of 2% or 2% bytes, respectively. What happens if a process has more
address space than the computer has main memaory and the process wants to use it
all? In the first computers, such a process wus just out of luck. Nowadays. a
technique called virtual memory exists, in which the operating system keeps part
of the address space in main memory and part on disk and shutiles pieces back
and forth between them as needed. This important operating system function, and
other memory management-related functions will be covered in Chap. 4.
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1.5.4 Input/Oufput

All computers have physical devices for acquiring input and prodi_.lcing oufput,
After all, what good would a computer be if the users could not tell it what FD do
and could not get the resules after it did the work requested. Many kinds of input
and output devices exist, including keyboards, monitors, printers, and sc on. It is
up to the operating system to manage these devices. ‘

Consequently, every operating system has an 1/0Q subsystem for managing its
1/0 devices. Some of the /O software is device independent, that is, applies o
many or all YO devices equally well. Other parts of it, such as device drivers, are
specific to particular /O devices. ln Chap. 5 we will have a look at IO software.

1.5.5 Files

Another key concept supported by virwally all operating systems is the file
system. As noted before, a major function of the operating system is to hide the
peculiarities of the disks and other I/O devices and present the programmer with a
nice, clean abstract model of device-independent files. System calls are obviocusiy
needed to create files, remove files, read files, and write files. Before a file can
be read, it must be located on the disk and opened, and after it has been read it
should be closed, so calls are provided to do these things.

To provide a place to keep files. most operating systems have the concept of a
directory as a way of grouping files together. A student, for example, might have
one directory for each course he is taking (for the programs needed for that
course), another directory for his electronic mail, and still another directory for his
World Wide Web home page. System calls are then needed 10 create and remove
directories. Calls are also provided 1o put an existing file in a directory, and to
remove a file from a directory. Directory entries may be either files or other
directories. This model also gives rise to a hierarchy—the file system—as shown
in Fig. 1-14.

The process and file hierarchies both are organized as trees, but the simifarity
stops there. Process hierarchies usvally are not very deep {more than three levels
is unusual), whereas file hierarchies are commonly four, five. or even more Jevels
deep. Process hierarchies are typically short-lived, generally a few minutes at
most, whereas the directory hierarchy may exist for years, Ownership and protec-
tion also differ for processes and files, Typically, only a parent pracess may con-
trol or even access a child process, but mechanisms nearly always exist to allow
files and directories to be read by a wider group than Just the owner.

Every file within the directory hierarchy can be specified by giving its path
name from the top of the directory hierarchy. the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root
directory to get to the file, with slashes separating the components. In Fig. 1-14,
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Figure 1-14. A file system for a university department.

the path for file CS101 is /Faculty/Prof.Brown/Courses/CSI10/. The leading slash
indicates that the path is absolute, that is, starting at the root directory. As an
aside, in MS-DQOS and Windows, the backslash (\) characier is used as the separa-
tor instead of the slash (/) character, so the file path given above would be written
as \Facult\Prof Brown\Courses\CS101. Throaghout this book we will generally
use the UNIX convention for paths.

At every instant, each process has a current working directory, in which path
names not beginning with a slash are looked for. As an example, in Fig. 1-14, if
/Faculry/Prof Brown were the working directory, then use of the path name
Courses/CS10{ would yield the same file as the absolute path name given above.
Processes can change their working directory by issuing a system call specifying
the new working directory.

Before a file can be read or written, it must be opened, at which time the per-
missions are checked. If the access is permitted, the system returns a small
integer called a file descriptor to use in subsequent operations. If the access is
prohibited, an error code is returned.

Another important concept in UNIX is the mounted file system. Nearly all
persenal computers have one or more floppy disk drives into which floppy disks
can be inserted and removed. To provide an elegant way to deal with removable
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media (including CHD-ROMSs), UNIX allows the (1le system on a floppy disk to he
aftached to the main tree. Consider the sitnation of Fig. I—lﬁgu}. Before the
mount cail, the root file system, on the hard disk, and a sccond fife system, on a
Noppy disk. are separate and unrelated.

Aoot Floppy
/ /
a \ b X / ¥ a b
/ /
c \ d c // X ¥
{a} {b)

Figure 1-15. {a) Before mounting, the tiles on drive O are not accessible, (b)
After mounting, they are part of the file hierarchy.

However, the file system on the floppy cannot be used, because there is no
way 10 specify path names on it. UNIX does not allow path names to be prefixed
by a drive name or number; that would be precisely the kind of device dependence
that operating systems ought to eliminate. Instead, the mount system call allows
the file systemn on the floppy to be attached to the root file sysiem wherever the
program wants it 1o be. In Fig. 1-15(b) the file system on the floppy has been
mounted on directory b, thus allowing access to files /b and /by, 1f directory &
had contained any files they would not be accessible while the floppy was
mounted, since /& would refer to the root directory of the floppy. (Not being able
to access these files is not as serious as it at first seems: file systems are nearly
always mounted on empty directories.) If a system contains multiple hard disks.
they can all be mounted into a single tree as weil.

Another important concept in UNIX is the special file. Special files are pro-
vided in order to make 1/0 devices look like files. That way, they can be read and
written using the same system calls as are used for reading and writing files. Two
kinds of special files exist: bleck special files and character special files. Block
special files are used to model devices that consist of a collection of randomly
addressable blocks, such as disks. By opening a block special file and reading,
say, block 4, a program can directly access the fourth block on the device. without
regard to the structure of the file system contained on it. Similarly, character spe-
cial files are used to model printers, modems, and other devices that accept or out-
put a character stream. By convention, the special Tiles are kept in the /dev direc-
tory. For example, /dev/ip might be the line printer.

The last feature we will discuss in this overview is one that relates to both
processes uand files: pipes. A pipe is a sort of pseudofile that can be used to con-
nect two processes, as shown in Fig. 1-16. 1f processes 4 and B wish to talk using



SEC. 1.5 OPERATING SYSTEM CONCEPTS 41

a pipe, they must set i{ up in advance. When process A wants o send data 10
process B, it writes on the pipe as though it were an ocutput file. Process 8 can
read the data by reading from the pipe as though it were an input file. Thus, com-
munication between processes in UNIX looks very much like ordinary file rez:ds
and writes. Stronger yet, the only way a process can discover that the output file
it is writing on i1s not really a file, but a pipe, is by making a special system ca!l.
File systems ure very important. We will have much more to say about them in
Chap. 6 and also in Chaps. 10 and 11.

Process Process
(===

Figure 1-16. Two processes connected by a pipe.

1.5.6 Security

Computers contain Jarge amounts of information that users often want to keep
confidential. This information may include electronic mail, business plans, tax
returns, and much more. It is up to the operating system to manage the system
security so that files, for example, are only aceessible to authorized users.

As a simple example, just to get an idea of how security can work, consider
UNIX. Files in UNIX are protected by assigning each one a 9-bit binary protection
code. The protection code consists of three 3-bit fields, one for the owner, one for
other members of the owner’s group (users are divided into groups by the system
administrator), and one for everyone else. Each field has a bit for read access. a
bit for write access, and a bit for execute access. These 3 hits are known as the
rwx bits. For example, the protection code rwxr-x--x means that the owner c¢an
read, write, or execute the file, other group members can read or execute {but not
write) the file, and everyone else can execute {(but not read or write) the file. For
a directory, x indicates search permission. A dash means that the corresponding
permission is absent,

In addition to file protection, there are many other security issues. Protecting
the system from unwanted intruders, both hurnan and nonkuman (e.g., viruses) is
one of them. We will fook at various secunty issues in Chap. 9,

1.5.7 The Sheli

The operating system is the code that carries out the system calls. Editors,
compilers, assembiers, linkers, and command interpreters definitely are not part of
the operating system, even though they are important and useful. At the risk of
confusing things somewhat, in this section we will look briefly at the UNIX com-
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mand interpreter, called the shell. Although it is not part of the operating system,
it makes heavy use of many operating system features and thus serves as a good
example of how the system calls can be used. It is also the primary interface
between a user sitting at his terminal and the operating system, unless the user is
using a graphical user interface. Many shells exist, including sh, csh, ksh, and
bash. All of them support the functionality described below, which derives from
the original shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as
standard input and standard output. It starts out by typing the prompt, a character
such as a dollar sign, which tells the user that the shell is waiting to accept a com-
mand. If the user now types

date

for example, the shell creates a child process and runs the dare program as the
child. White the child process is running, the shell waits for it to terminate.
When the child finishes. the shell types the prompt again and tries to read the next
input line.

The user can specify that standard output be redirected to a file, for example,

date >file
Similarly, standard input can be redirected. as in
sart <file1 >file2

which invokes the sort program with input taken trom filel and output sent to
file2.

The output of one program can be used as the input for another program by
connecting them with a pipe. Thus

cat filet file2 fite3 | sont >/dev/ip

invokes the cat program to concatenate three files and send the output to sort to
arrange all the lines in alphabetical order. The output of sort is redirected to the
file /dev/ip, typically the printer.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it just gives a prompt immediately. Consequently, '

cat file1 file2 file3 | sort >/dev/ip &

starts up the sort as a background job, allowing the user to continue working nor-
mally while the sort is going on. The shell has a number of other interesting
features, which we do not have space to discuss here. Most books on UNIX dis-
cuss the shell at some length fe.g., Kernighan and Pike, 1984; Kochan and Wood.,
1990; Medinets, 1999; Newharn and Rosenblatt, 1998: and Robbins, 1999).
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1.5.8 Recycling of Concepts

Computer science, like many fields, is largely technology driven. The reason
the ancient Romans lacked cars is not that they liked walking so much. It is
because they did not know how to build cars, Personal computers exist not
because millions of people had some long pent-up desire to own a computer, but
because 1t is now possible to manufacture them cheaply. We often forget how
much technology affects our view of systems and it is worth reflecting on this
point from time to time.

In particular, it frequently happens that a change in technology renders some
idea obsolete and it quickly vanishes. However, another change in technology
could revive it again. This is especially true when the change has to do with the
relative performance of different parts of the system. For example, when CPUs
became much faster than memories, caches became important to speed up the
“slow™ memory. If new memory technology some day makes memories much
faster than CPUs, caches will vanish. And if a new CPU technology makes them
faster than memories again, caches will reappear. In biology, extinction is for-
ever, but in computer science, it is sometimes only for a few years.

As a consequence of this impermanence, in this book we will from time to
time look at “obsolete” concepts, that is, ideas that are not optimal with current
technology. However, changes in the technology may bring back some of the so-
called “obsolete concepts.” For this reason, it is important to understand why a
concept is obsolete and what changes in the environment might bring it back
again.

To make this point clearer, let us consider a few examples. Early computers
had hardwired instruction sets. The instructions were executed directly by
hardware and could not be changed. Then came microprogramming, in which an
underlying interpreter carried out the instructions in software. Hardwired execu-
tion became obsolete. Then RISC computers were invented, and microprogram-
ming (i.e., interpreted execution) became obsolete because direct execution was
faster. Now we are seeing the resurgence of interpretation in the form of Java
applets that are sent over the Intemet and interpreted upon arrival. Execution
speed is not always crucial because network delays are so great that they tend to
dominate. But that could change, too, some day.

Early operating systems allocated files on the disk by just placing them in
contiguous sectors, one after another. Although this scheme was easy to imple-
ment, it was not flexible because when a file grew, there was not enough room o
store it any more. Thus the concept of contiguously allocated files was discarded
as obsolete. Until CD-ROMSs came around. There the problem of growing files
did not exist. All of a sudden, the simplicity of contiguous file allocation was
seen as a great idea and CD-ROM file systems are now based on it.

As our final idea, consider dynamic hinking., The MULTICS system was
designed to run day and night without ever stopping. To fix bugs in software, it
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was necessary to have o way to replace iibrary procedures while they were being
used. The concept of dynamic linking was invented for this purpose. After MUL-
TICS died, the concept was forgotten for a while. However, it was rediscovered
when modern operating systems needed a way to allow many programs to share
the same library procedures without having their own private copies (because
graphics hibraries had grown so large). Most systems now support some form of
dynamic linking once again. The list goes on. but these exampies should make
the point: an idea that s obsolete today may be the star of the party tomorrow.

Technology is not the only fuctor that drives systems and software. Econom-
ics plays a big role too. In the 1960s and 1970s, most terminals were mechanical
printing terminals or 25 x 80 character-oriented CRTs rather than bitmap graphics
terminals. This choice was not a question of technology. Bit-map graphics termi-
nals were in use before 1960, It is just that they cost many tens of thousands of
dollars each. Only when the price came down enormously could people (other
than the military) think of dedicating vne terminal to an individual user.

1.6 SYSTEM CALLS

The interface between the operating system and the user programs 1§ defined
by the set of systein calls that the operating system provides. To really understand
what operating systems do, we must examine this interface closely. The system
calls available in the interfuce vary from operating system Lo operating system
(although the underlying concepts tend to be similar},

We are thus forced to make a choice between (1) vague generalities (operat-
ing systems have system cails for reading files™) and (2) some specific system
("UNIX has 4 read system call with three parameters: one 10 spectty the file, one
to tell where the data are to be put, and one 1o telf how many bytes to read™ ),

We have chosen the latter approach. It's more work that way. but it gives
morc Insight into what operating systems really do. Although this discussion
specifically refers to POSIX (International Standard 9945-1). hence also 10 UNIX,
System. V. BSD, Linux, MINIX, etc.. most other modern operating systems have
system calls that perform the same functions. even if the details differ. Sice the
actual mechanics of issuing a system calt urc highly machine dependent and ofien
must be expressed in assembly code. a procedure library is provided to make it
possible to make system valls from C programs and often from other Languages as
well,

It is useful to keep the following in mind. Any single-CPU computer can exe-
cute only one instruction at a time. If a ProCess 18 running 4 user program in user
mode and needs a system service, such as reading data from a file, it has 10 exe-
cute a trap or system call instruction to transter control to the operaling system.
The operating system then figures out what the calling process wants by inspect-
ing the parameters. Then it carries out the system <all and returns controt 10 the
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instruction following the system call. In a sensc, making a systemm call is like
making a special kind of procedure call. only system calls enter the kernel and
procedure calls do not. 7

To make the system call mechanism clearer, let us take a quick look at the
read system call. As mentioned above, it has three parameters: the first one speci-
fying the file, the second one pointing to the buffer, and the third one giving the
number of bytes to read. Like nearly ali system calls, it is invoked from C pro-
grams by calling a library procedure with the same name as the system call: read.
A call from a C program might lock like this:

count = read({fd, butfer, nbytes);

The system call (and the library procedure) return the number of bytes actually
read in count. This value is normally the same as nbytes, but may be smailer, if, -
for example, end-of-file is encountered while reading.

if the system call cannot be carried out, either due to an invalid parameter or a
disk crror, count is set to —1, and the error number is put in a global variable,
errno. Programs should always check the results of a system call to see if an error
occurred.

System calls are performed in a series of steps. To make this concept clearer,
let us examine the read call discussed above. In preparation for cailing the read
library procedure, which actually makes the read system call, the calling program
first pushes the parameters onto the stack, as shown in steps 1-3 in Fig. 1-17. C
and C++ compilers push the parameters onto the stack in reverse order for histori-
cal reasons (having to do with making the first parameter to printf, the format
string, appear on top of the stack). The first and third parameters are called by
vatue, but the second parameter is passed by reference, meaning that the address
of the buffer (indicated by &) is passed, not the contents of the buffer. Then
comes the actual call to the library procedure (step 4). This instruction is the nor-
mal procedure call instruction vsed to call al procedures.

The library procedure, possibly written in assembly language, typically puts
the system call number in a place where the operating system expects it, such as a
register (step 5). Then it executes a TRAP instruction to switch from user mode to
kernel mode and start execution at a fixed address within the kernel (step 6). The
kernel code that starts examines the system call number and then dispatches to the
correct system call handler, usually via a table of pointers to system call handlers
tndexed on system cail number (step 7). At that potint the system call handler runs
(step 8). Once the system call handler has completed its work. control may be
returned to the user-space library procedure at the instruction following the TRAP
instruction (step 9). This procedure then returns to the user program in the usual
way procedure calls return (step 10).

To finish the job, the user program has to clean up the stack, as it does after
any procedure call (step 11). Assuming the stack grows downward, as it often
does. the compiled code increments the stack pointer exactly enough to remove
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Figure 1-17. The 11 steps in making the system call read{fd, bufter, nbytes).

the parameters pushed before the call to read. The program is now free to do
whatever it wants to do next.

In step 9 above, we said “may be returned to the user-space library procedure
.. for good reason. The system call may block the caller, preventing it from
continuing, For example, if it is trying to read from the keyboard and nothing has
been typed yet, the caller has to be blocked. In this case. the operating system
will ook around to see if some other process can be run next. Later, when the
desired input is available, this process will get the attention of the system and
steps 9-11 will occur.

In the following sections, we will examine some of the most heavily used
POSIX system calls, or more specifically, the library procedures that make those
- system calls. POSIX has about 100 procedure calls, Some of the most important
ones are listed in Fig. 1-18, grouped for convenience in four categories. In the
text we will briefly examine each call to see what it does. To a large extent, the
services offered by these calls determine most of what the operating system has to
do, since the resource management on personal computers is minimal (at least
compared to big machines with multiple users). The services include things like
creating and terminating processes, creating, deleting, reading, and writing files,
managing directories, and performing input and output.
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SEC. 1.6 SYSTEM CALLS
B Proceas management
' Cali Description
- pid = fork( ) Create a chii_q_ process identical to the parent

| pid = waitpic(pid, &statioc, options)
! s = gxacve(name, argyv, epvimnp}_m

_‘_u_\_r'_q_i_t_ f_or a child to terminate

Replace a process’ core image

i exit{status)

Terminate process execution and return status

Calk

Flie r_pa_r!ggfment

Description

| id = open(file, now, ...)

Open a fils for reading, writing or both

$ = close(id)

Close an open file

n = read(id, buffer, nbytes)

Read data from a file intg_ a buffer

n =wwrite{fd, buffer, nbytes)

Write _r;iata from a buﬁ_e_r__r into a file

position = |seek(fd, offset, when&é]

Move the file pointer

s = stat{name, &buf)

Get a fite's status infnrmaﬂon

Calt

Diractory and flle system management

Description

1 § = mkdir(name, mode)

Create a new directory

5 = rindir{inams}

Remove an empty directory

$ = link{hama1, name?2)

—
Create a new entry, namez2, pointing to name1

5 = unlinkiname)

Remove a directory entry

8 = mount(special, name, flag)

Mount a file system

5 = umount{special}

Unrmount a file system

Miscetlaneous

Call

Description

8 = ¢chdir{dirnamae)

. Change the working directory

§ = chmod{nams, mods)

Change a file's protection bits

§ = kill{pid, signal)

Send a signal to a process

seconds = timeé(&seconds)

Gat the slapsed time singe Jan. 1, 1970

Figure 1-18, Some of the major POSIX system calls. The retun code s is —1 if
an error has occurred. The return codes are as follows: pid is a process id, fdis a
file descriptor, n is a byte count, position is an offset within the file, and seconds
is the elapsed time. The parameters are explained in the text.

As an aside, it is worth pointing out that the mapping of POSIX procedure
calls onto system calls is not one-to-one. The POSIX standard specifies a number
of procedures that a conformanmt system must supply, but it does not specify
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whether they are system calls, library eails, or something else. [f a4 procedure can
be carried out without invoking a system cail (i.e., without trapping to the kernel),
it will vsually be done in user space for reasons of performance. However, most
of the POSIX procedures do invoke system calls, usually with one procedure map-
ping directly onto one system call. In a few cases. especially where several
required procedures are only minor variations of one another, one system cail han-
dles mare than one library call.

L6.1 System Calls for Process Management

The first group of calls in Fig. 1-18 deals with process management. Fork is a
good place to start the discussion, Fork is the only way to create a new process in
UNIX. It creates an exact duplicate of the original process, including all the file
descriptors, registers—everything. Afier the fork. the original process and the
copy (the parent and child) go their separate ways. All the variables have identi-
cal values at the time of the fork, but since the parent’s data are copied to create
the child, subsequent changes in one of them do not affect the other one. {The
program text, which is unchangeable, is shared between parent and child.) The
tork call returns a value, which is zero in the child and equal to the child’s process
identifier or PID in the parent. Using the returned PID, the twe processes can see
which one is the parent process and which one is the child pProcess.

In most cases, after a fork, the child will need to execute different code from
the parent. Consider the case of the shell. It reads a command from the terminal,
forks off a child process, waits for the child to execute the command, and then
reads the next command when the child terminates. To wait for the child to fin-
ish, the parent executes a waitpid system call, which just waits until the child ter-
minates (any child if more than one exists). Waitpid can wait for a specific child,
or for any old child by setting the first parameter to —1. When waitpid completes.
the address pointed to by the second parameter, statloc, will be set 1o the child's
exit status (normal or abnormal termination and exit value}. Various options are
also provided, specified by the third parameter.

Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user command.
It does this by using the execve system call, which causes its entire core image (o
be replaced by the file named in its first parameter. (Actually, the system call
itself is exec, but several different library procedures call it with different parame-
ters and slightly different names. We will treat these as system calls here.) A
highly simplified sheil tlustrating the use of fork, waitpid, and execve is shown in
Fig_ 1-19.

In the most general case, execve has three parameters: the name of the file o
be executed, a pointer to the argument array. and a pointer to the environmenti
array. These will be described shortly, Various library routines, including execi,
execy, execle, and execve, are provided to allow the parameters to be omitted or
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#define TRUE 1
while {TRUE) { /* repeat forever =/
type_prompt{ }; f* dgisplay prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() 1= Q) { /* fark off ¢child process */
/* Parent code. =/
waitpid{-1, &status, 0): M+ wait for child to exit */
Yelse |
/* Child code. */
execve{command, parameters, 0); /* execute command +/
}

Figure 1-19. A stripped-down shell. Throughout this hook, TRUE is assumed
to be defined as {.

specified 1n various ways. Throughout this book we will use the name exec to
represent the system call invoked by all of these.
Let us consider the case of a command such as

cp filet file2

used to copy file! to file2. Afier the shell has forked, the child process locates and
executes the file cp and passes (o it the names of the source and targel files.

The main program of ¢p (and main program of most other C programs) con-
tains the declaration

main{argc, argv, envp)

where argc is a count of the number of items on the command line, including the
program name. For the example above, argc is 3,

The second parameter, argv, is a pointer to an array, Element i of that array Is
a pointer to the i-th string on the command line. In our example, argv[0] would
point to the string “cp™, argv[1] would point to the string “filel1” and argv|2]
would point to the string “file2”".

The third parameter of main, envp, is a pointer to the environment, an aray of
strings containing assignments of the form name = value used to pass information
such as the terminal type and home directory name to a program. In Fig. 1-19, no
environment is passed to the child, so the third parameter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most com-
plex of all the POSIX system calls. All the other ones are much simpler. As an
example of a simple one, consider exit, which processes should use when they arc
finished executing. 1t has one parameter, the exit status (0 10 235), which is
returned to the parent via statfoc in the waitpid system call.
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Processes in UNIX have their memory divided up into three segments: the text
segment (i.c., the program code), the data segment (i.c.. the variabhles}, and the
stack segment. The data segment grows upward and the stack grows downward,
as shown in Fig. 1-20. Between them is a gap of unused address space. The Htaclk
grows into the gap automatically, as needed, but expansion of the data segment is
done explicitly by using a system call, brk, which specifies the new address where
the data segment is to end. This call, however. is not defined by the POSIX stan-
dard, since programmers are encouraged to use the malloc library procedure for
dynamically allocating slorage, and the underlying implementation of mafioc was
not thought to be a suitable subject for standardization since few programmers use
1t directly.

Address {hax)
FFFE

Stack

Data |
Taxt

|

0000

Figure 1-20. Processes have three segments: wext, data, and stack.

1.6.2 System Calls for File Management

Many system calls relate to the file system. In this section we will look at
calls that operate on individual files; in the next one we will examine those that
involve directories or the file system as a whole.

To read or write a file, the file must first be opened using open. This cail
specifies the file name to be opened, either as an absolute path name or reiative to
the working directory, and a code of O_RDONLY, O_ WRONLY, or O_RDWR,
meaning open for reading, writing, or both. To create a new file. G_CREAT is
used. The file descriptor returned can then be used for reading or writing, After-
ward, the file can be closed by close, which makes the file descriptor available for
reuse on a sebsequent open.

_ The most heavily used calls are undoubsedly read and write. We saw read
earlier. Write has the same parameters,

Although most programs read and write tiles sequentially, for some applica-
tions programs need to be able to access any part of a file at random. Associated
with each file is a pointer that indicates the current position in the file. When
reading (writing) sequentialty, it normally points to the next byte to be read (writ-
ten). The Iseek call changes the value of the position pointer, so that subsequent
calls to read or write can begin anywhere in the file.
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Lseek has three parameters: the first is the file descriptor for the filf:, the
second 1s a file position, and the third tells whether the file position is relative to
the beginning of the file, the current position, or the end of the file. The value
returned by iseek is the absolute position in the file after changing the pointer,

For each file, UNIX keeps track of the file mode (regular file, special file,
directory, and so on), size, time of last modification, and other information. Pro-
grams can ask to see this information via the stat system call. The first parameter
specifies the file to be inspected; the second one is a pointer to a structure where
the information is to be put.

1.6.3 System Calls for Directory Management

In this section we will look at some system calls that refate more to directories
or the file system as a whole, rather than just to one specific file as in the previous
section. The first two calls, mkdir and rmdir, create and remove empty directories,
respectively. The next call is link. Is purpose is to allow the same file to appear
under two or more names, often in different directories. A typical use is to allow
several members of the same programming team to share a common file, with
each of them having the file appear in his own directory, possibly under different
names. Sharing a file is not the same as giving every team member 2 private
copy, because having a shared file means that changes that any member of the
team makes are instantly visible to the other members—there is only one file,
When copies are made of a file, subseqguent changes made to one copy do not
affect the other ones.

To see how link works, consider the situation of Fig. 1-21{a). Here are two
users, ast and jim, each having their own directories with some files. If ast now
executes a program containing the system call

link("/usrfiim/mema"”, "fusrfast/note”);

the file memo in jim’s directory is now entered into ast's directory under the name
note. Thereafter, /usr/jim/memo and /Jusr/ast/note refer to the same file. As an
astde, whether user directories are kept in /usr, /user, /home, or somewhere else is
simply a decision made by the local system administrator.

Understanding how link works will probably make it clearer what it does.
Every file in UNIX has a unique number, its i-number, that identifies it. This i-
number is an index into a table of i-nodes, one per file, telling who owns the file,
where its disk blocks are, and so on. A directory is simply a file containing u set
of (i-number, ASCII name) pairs. In the first versions of UNIX, each direciory
entry was 16 bytes—2 bytes for the i-namber and 14 bytes for the name. Now a
more complicated structure is needed to support long file names, but conceptually
a directory is stili a set of (i-number, ASCII name} pairs. In Fig, 1-21, mail has i-
number 16, and so on, What link does is sinply create a new directory entry with
a (possibly new) name, using the i-number of an existing file. In Fig. 1-21(b), two
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o~

fusrfast fusrjirn fusr/ast jusrijim
16 { mai A1 | in 16 | mail 31 ] hin
81| games 70 | memo 81| games 70 { meme
441 { tast g9 fe. 40 | test 59 11.c.
38| prog1 70| note 38 | prog?
(a) {b)

Figure 1-21. (a) Two direciories before linking Ase/fimAneme 10 ast's directory,
{b3y The same directories after linking.

entries have the same i-number (70) and thus refer to the same file. I either one
is later removed, using the unlink systemn call. the other one remains. I both are
removed, UNIX sees that no entries to the file exist (a field in the i-node keeps
track of the number of directory entries pointing to the file), so the file is removed
from the disk.

As we have mentioned earlier, the mount system call allows two file systems
to be merged into one. A common situation is to have the root file system con-
taining the binary (executable) versions of the common commands and other
heavily used files, on a hard disk. The user can then insert a floppy disk with files
to be read into the floppy disk drive.

By executing the mount system call, the floppy disk file system can he

attached 1o the root file system. as shown in Fig, 1-22. A typical statement in C 1o
perform the mount is

mount{"/dev/fd0", “/mnt", 0);

where the first parameter is the name of a block special file for drive 0, the second
parameter is the place in the tree where it is to be mounted, and the third parame-
tet tells whether the file system is to be mounted read-write or read-only.

bin dev ib mnt use bin dev itz Lsr

{a) o)
Figure 1-22, {a) File system before the mount, (b) File system after the mmount.

After the mount call. a file on drive 0 can be accessed by just using its path
from the root directory or the working directory, withoul regard to which drive it
is on. In fact, second, third, and fourth drives can also be mounted anywhere in
the tree. The mount call makes it possible to integrate removable media into a
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single integrated file hierarchy, without having (o worry about which i_ievice 4 file
is on. Although this example involves floppy disks. hard disks or portions of hard
disks (often called partitions or minor devices) can also be mounted this way.
When a tile system 1s no longer needed. it can be unmounted with the umount sys-
tem call.

1.6.4 Miscellaneous System Calls

A variety of other system calls exist as well. We will look at just four of them
here. The chdir call changes the current working directory. After the call

chdir{/usr/astfiest"):

an open on the file xyz will open /usr/asi/test/xyz. The concept of a working
directory eliminates the need for typing (long) absolute path names all the time.

In UNIX every file has a mode used for protection. The mode includes the
read-write-execute bits for the owner, group, and others. The chmod system call
makes 1t possible to change the mode of a file. For example, to make a file read-
only by everyone except the owner. one could execute

chmod("file”, 0644);

The kill system call is the way users and user processgs send signals, I a
process is prepared to catch a particutar signal, then when it arrives, a signal
handler is run. If the process is not prepared to handle a stgnal, then its arrival
kills the process (hence the name of the cally.

POSIX defines several procedures for dealing with time. For example, time
Just returns the current time in seconds. with 0 corresponding to Jan. 1, 1970 at
midnight (just as the day was starting, not ending). On computers with 32-bit
words, the maximum value time can return is 2™ — | seconds {assuming an
unsigned integer is used). This value corresponds to a litle over 136 yeurs. Thus
in the year 2106, 32-bit UNIX systems will go berserk, imitating the famous Y2K
problem. If you currently have a 32-bjt UNIX system, you are advised to wrade it
in for a 64-bit one sometime before the vear 2106,

1.6.5 The Windows Win32 API

So far we have focused primarily on UNIX. Now it is time 1o look briefly at
Windows. Windows and UNIX differ in a fundamental way in their respective
programming models. A UNIX program consists of code that does something or
other. making system calls to have certain services performed. In contrast. a Win-
dows program is normally event driven. The main program waits for some evenlt
fo happen. then calls a procedure 1o handle it Typical events are keys being
struck, the mouse being moved, a mouse button being pushed, or a floppy disk
insested.  Handlers are then called to process the event. update the screen and
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update the internal program state. All in all, this leads 1o a snme'fvhat different
style of programming than with UNIX, but since the focus of t.h15 book is on
operating system function and structure, these different programming models will
not concern us much more.

Of course, Windows also has systemn calls, With UNIX, there is almost a 1-
to-] relationship between the system calls (e.g., read) and the library procedures
{e.g., read) used to invoke the system calls. In other words, for each system call,
there is roughly one library procedure that is called to invoke it, as indicated in
Fig. 1-17. Furthermore, POSIX has only about 100 procedure calls,

With Windows, the situation is radically different. To start with, the library
calls and the actoal system calls are highly decoupled. Microsoft has defined a set
of procedures, called the Win32 AP (Application Program Interface) that pro-
graminers are expected (o use to get operating system services. This interface is
(partially) supported on all versions of Windows since Windows 95. By decou-
pling the interface from the actual sysiem calls, Microsoft retains the abiity to
change the actual system calls in time (even from release to release) without
mvalidating existing programs. What actually constitutes Win32 is also slightly
ambiguous since Windows 2000 has many new calls that were not previously
available. In this section, Win32 means the interface supported by all versions of
Windows,

The number of Win32 API calls is extremely large, numbering in the
thousands. Furthermore, while many of them do invoke system calls, a substan-
tial number are carried out entirely in user space. As a consequence, with Win-
dows it is impossible to see what is a systein call (ie., performed by the kemel)
and what is simply a user-space library call. In fact, what is a system call in one
version of Windows may be done in user space in a different version, and vice
versa. When we discuss the Windows system calis in this book, we will use the
Win32 procedures (where appropriate) since Microsoft guarantees that these will
be stable over time. But it is worth remembering that not all of them are true sys-
tem calls (i.e., traps to the kernel).

Another complication is that in UNIX, the GUI (e.g.., X Windows and Motif}
runs entirely in user space, so the only system calls needed for writing on the
screen are write and a few other minor ones. Of course, there are a large number
of calls to X Windows and the GUI, but these are not system calls in ANy Sense.

In contrast, the Win32 APl has a huge number of calls for managing win-
dows, geometric figures, text, fonts, scrollbars, dialog boxes, menus, and other
features of the GUI. To the extent that the graphics subsystem runs in the kernel
(true on some versions of Windows but not on all), these are system cails; other-
wise they are just library calls. Should we discuss these calls in this book or not?
Since they are not really related to the function of an aperating system, we have
decided not to, even though they may be carried out by the kernel. Readers
nterested in the Win32 API should consult one of the many books on the subject,
for example (Hart, 1997; Rector and Newcormer, 1997; and Simon, 1997,
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Even introducing all the Win32 API calls here 1 out of the question, so we
will restrict ourselves (o those calls that roughly correspond to the tunchionality of
the UNIX calls listed in Fig. 1-18. These are listed in Fig. 1-23.

Description |

- et o e ]

CuNx | wWiesz |
. fork l CreateProcess Create a new process

waitpid | _Wai@ié‘?i_n_gi_e(?bjeé_t- Can wait for a process to exit

4—— - e———

| CreateProcess = fork + eXecve

—— — .. - R R e —

 execve | {nons)

i exit EXitProcess . Terminate execution

| |

| Dpen ' CreateFile
|-— - o . -

| close | GloseHandle

—_ . —_———— ———— . — e —

| Create a file or open an existing file

Ciose a file R

ead | ReadFile | Readdaafromatfie - )
wiite | WriteFile | writecatatoafie o o
seek . SefFilePointer | Movethefie pointer
Ezﬁ_ I--EEtFi*Eﬂ_ﬂrigu_téSEx_ Get. varie_u_s file itt_ijib_ut_es L o
mkdir | CreateDirectory  Create anewdirectory _
crmdir | RemoveDirectory ° Remove anempty directory .
[tink [ (oone) | Jing2 does notsupportinks, {
|uniink_; DeleteFile | Oestroy an existing file ]
 mount | (none) | Win32 does not support mount .
umount | inone)____. __ Win32doesnotsupportmount |
| ehdir . SetCumrentDirectory | Change the current working directory __.]
chmod | (none) . Win32 does not support security (afthough NT does) |
| kil (none) _ Win32 does not support signals a

[time | GeflocalTime | Get the current time__ D

Figure 1-23. The Win32 API calls that roughly correspond o the UNIX calls of
Fig. [-18.

Let us now briefly go through the list of Fig. [-23. CreateProcess creates a
new process. It does the combined work of fork and execve in UNIX. It has many
parameters specifying the properties of the newly created process. Windows does
not have a process hierarchy as UNIX does so there is no concept of a parent prog-
ess and a child process. After a process is created, the creator and createe are
equals. WaitForSingleObject is used to wait for an event. Many possible events
can be waited for, If the parameter specifics a process, then the calier waits for
the specified process to exit, which is done using ExitProcess.

The next six cails operate on files and are funcuionally similar to their UNIX
counterparts although they differ in the parameters and details. Still, files can be
opened, closed, read, and written pretty much as in UNIX. The SetFilePointer and
GetFileAttributesEx calls set the file position and get some of the file attributes.
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Windows has directories and they are created with CreateDirectory and
Removelirectory, respectively. There is also a notion of a current dlil‘ﬂi?!ﬂr}-'. set
by SetCurrentDirectory. The current time s acquired using GetlocalTime.

The Win32 interface does not have links to files, mounted file systems, secu-
rity, or signals, so the calls corresponding to the UNIX ones do not exist. Of
course. Win32 has a huge number of other calls that UNIX does not have. espe-
cially for managing the GUL. And Windows 2000 has an elaborate security sys-
teimn and also supports fife finks.

One last note about Win32 is perhaps worth making, Win32 is not a terribly
uniform or consistent interface. The main culprit here was the need to be hack-
ward compatible with the previous §6-bit interface used in Windows 3.x.

1.7 OPERATING SYSTEM STRUCTURE

Now that we have seen what operating systems look like on the outside {l.e..
the programmer’s interface), it is time to take a look inside. In the following sec-
tions, we will examine five different structures that have been tried. in order to get
some idea of the spectrum of possibilities. These are by no means exhaustive, hut
they give an idea of some designs that have been tried in practice. The five
designs are monolithic systems, layered systems. virtual machines. exokernels,
and client-server systems.

1.7.1 Monolithic Systems

By far the most common organization, this approach might wetl be subtitled
“The Big Mess.” The structure is that there is no structure. The operating system
1s written as a collection of procedures, each of which can call any of the other
ones whenever it needs to. When this technique is used, each procedure in 1he
system has a well-defined interface in terms of parameters and results, and each
one 1s free to call any other one, if the latier provides some uscful computation
that the former needs,

To construct the actual object program of the operating system when Lhis
approach s used, one first compiles all the individual procedures, or files contain-
ing the procedures, and then binds them all together into a single object file using
the system linker. In terms of information hiding, there is essentially none-—every
procedure is visible to every other procedure (as opposed to a structure containing,
modules or packages, in which much of the information is hidden away inside
modules, and only the officially designated entry points can be called from out-
side the module),

Even in monolithic systems, however, it is possible to have at least a little
structure. The services {(system calls) provided by the operating system arc
requested by putting the parameters in a well-defined place (e.g., on the stack) and
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then executing a trap instruction. This instruction switches the machine from user
made to kernel mode and transfers control te the operating system, shown as step
6 in Fig. 1-17. The operating system then fetches the parameters and determines
which system call is 10 be carried out. After that, it indexes into a table that con-
tains in slot & a pointer o the procedure that carries out system call & (siep 7 in
Fig. 1-17).

This organization suggests a basic structure for the operating system:

F. A main program that invokes the requested service procedure.
2. A set of service procedures that carry out the system calls,
3. A set of wtility procedures that help the service procedures,

In this model, for each system call there is one service procedure that takes care
of it. The utility procedures do things that are needed by several service pro-
cedures, such as fetching data from user programs. This division of the pro-
cedures into three layers is shown in Fig. 1-24,

Utility
procadures

Figure 1-24. A simple structuring mode! for a monolithic system.

1.7.2 Layered Systems

A generalization of the approach of Fig. 1-24 is to organize the operating sys-
tem as a hierarchy of layers, each one constructed upan the one below it. The first
System constructed in this way was the THE system built at the Technische
Hogeschool Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his stu-
dents. The THE system was a simple batch system for a Dutch computer, the
Electroiogica X8, which had 32K of 27-bit words (bits were expensive back then).

The system had 6 layers, as shown in Fig. 1-25. Layer 0 dealt with allocation
of the processor, switching between processes when interrupts occurred or timers
expired. Above layer 0, the system consisted of sequential processes, each of
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which could be programmed without having to worry about the tact that mul#iple
processes were running on a single processor. In other words, layer 0 provided
the basic multiprogramming of the CPU,

Layer | Function
3 | The operator ~ S
. 4 | User programs . _|

3 | Input/output management B o
| 2 | Operator-process communication |

1. . Memory and drum management
: 0 4,_ Processor allocation and multiprogramming

Figure 1-25. Structure of the THE operating system,

Layer | did the memory management. It allocated space for processes in
main memory and on a 512K word drum used for holding parts of processes
(pages) for which there was no room in main memory. Above layer 1. processes
did not have to worry about whether they were in memory or on the drum; the
layer | software took care of making sure pages were brought intv memory when-
ever they were needed.

Layer 2 handled communication between each process and the aperator con-
sote. Above this layer each process effectively had its own operator console.
Layer 3 took care of managing the /O devices and buffering the information
streams to and from them. Above layer 3 each process could deal with abstract
/O devices with nice properties, instead of real devices with many peculiarities.
Layer 4 was where the user programs were found. They did not have to worry
about process, memory, console, or /O management. The system operator proc-
ess was located in layer 5.

A further generalization of the layering concept was present in the MULTICS
system. Instead of layers, MULTICS was described as having a series of concen-
tric rings, with the inner ones being more privileged than the outer ones (which is
effectively the same thing). When a procedure in an outer rnng wanted to call a
procedure in an inner ring, it had to make the equivalent of 2 system call. that is, a
TRAP instruction whose parameters were carefully checked for validity before
allowing the call to proceed. Although the entire aperating system was part of the
address space of each user process in MULTICS, the hardware made it possible to
designate individual procedures (memory segments. actually) as protected against
reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all
the parts of the system were ultimately linked together into a single obiect pro-
gram, in MULTICS, the ring mechanism was very much present at run time and
enforced by the hardware. The advantage of the ring mechanism is that it can
easily be extended to structure user subsystems. For example, a professor could
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write a program to test and grade student programs and run this program in ring n,
with the student programs running in ring » + 1 so that they could not change their

grades.
1.7.3 Virtual Machines

The initial releases of O8/360 were strictly batch systems. Nevertheless, many
360 users wanted to have timesharing, so various groups, both inside and outside
IBM decided to write timesharing systems for it. The official IBM timesharing
system, TS53/360, was delivered late, and when it finally arrived it was so big and
slow that few sites converted to it. It was eventually abandoned after its develop-
ment had consumed some 350 million (Graham, 1970). But a group at IBM's
Scientific Center in Cambridge, Massachusetts, produced a radically different Sys-
tem that IBM eventually accepted as a product, and which is now widely used on
its remaining mainframes.

This system, originally called CP/CMS and later renamed VYM/370 (Seawright
and MacKinnon, 1979}, was based on an astute observation: a timesharin g system
provides (1) multiprogramming and (2) an exiended machine with a more con-
venient interface than the bare hardware. The essence of VM/370 is to completely
separate these two functions.

The heart of the system, known as the virtual machine monitor, runs on the
bare hardware and does the multiprogramming, providing not one, but several vir-
tual machines to the next layer up, as shown in Fig. 1-26. However, unlike all
other operating systerns, these virtual machines are not extended machines, with
files and other nice features, Instead, they are exact copies of the bare hardware,

including kernel/user mode, /O, interrupts, and everything else the real machine
has.

Virtual 370s
11" System calls here
1O instructions here —=1 CMS CMS cMS T} Trap here
Trap herg —=Y VM/370
370 Bare hardwarse

Figure 1-26. The structure of ¥YM/370 with CMS.

Because each virtual machine is identical to the true hardware, each ane can
run any operating system that will run directly on the bare hardware. Different
virtual machines can, and frequently do, run different operating systems, Some
run one of the descendants of 08/360 for batch or transaction processing, while

other ones run a single-user, interactive systemn called CMS (Conversational
Monitor System) for interactive timesharing users.
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When a CMS program executes a systemn call, the call is rapped (o the operat-
g system in its own virtual machine, not to YM/370, just as it‘ would if it were
running on a real machine instead of a virtual one. CMS then issues the normal
hardwuare /O instructions for reading s virtuazl disk or whatever is needed 1o
carry out the call. These 140 instructions are {rapped by VM/370, which then per-
forms them as part of its simulation of the real hardware. By completely separat-
ing the functions of multprogramming and providing an extended machine. each
of the pieces can be much simpler. more flexible, and easier 10 maintain.

The idea of a virtual machine is heavily used nowadays in a different context:
running old MS-DOS programs on a Pentium (or other 32-bit Intel CPU). When
designing the Pentium and its software, both Intel and Microsoft realized that
there would be a big demand for running old software on new hardware. For this
reason, Intel provided a virtnal 8086 mode on the Pentinm. In this mode, the
machine acts like an 8086 (which is identical to an 8088 from a software point of
view), including 16-bit addressing with a 1-MB limit.

This mode is used by Windows and other operating systems for running MS-
DOS programs. These programs are started up in virtual 8086 mode. Ag long as
they execute normal instructions. they run on the bare hardware. However, when
4 program tries to trap to the operating system to make a system call, or tries to do
protected 10 directly, a trap to the virtual machine monitor oceurs.

Two variants on this design are possible. In the first one, MS-DOS itself is
loaded into the virtual 8086’s address space, so the virtual machine monitor just
reflects the trap back to MS-DOS, just as would happen on a real 8086, When
MS-DOS later tries to do the 140 itself, that operation is caught and carried out by
the virtual machine monitor.

in the other variant, the virtuat machine monitor just catches the first trap and
does the J/O itself, since it knows what all the MS-DOS system calls are and thus
knows what each trap is supposed to do. This variant is less pure than the firse
one, since it only emulates MS-DOS correctly, and not other operating systems, as
the first one does. On the other hand, it is much faster. since it saves the trouble
of starting up MS-DOS 10 do the I/O. A further disadvantage of actually running
MS-DOS in virtual 8086 mode is that MS-DOS fiddies around with the interrupt
enable/disable bit quite a iot, all of which must be emulated at considerable cost.

It is worth noting that neither of these approaches are really the same as
VYM/370. since the machine being emulated is not a full Pentium. but only an 8086,
With the VM/370 system. it is possible to run VM/370, itself. in the virtual
machine. With the Pentium, it is not possible to run, say, Windows in the virtyal
8086 because no version of Windows runs on an BOB6; a 286 is the minimum for
even the oldest version, and 286 emulation is not provided tlet alone Pentium
emulation). However, by modifying the Windows binary slightly, this emulation
is possible and even available in commercial products.

Another area where virtual machines are used. but in a somewhat different
way. is for running Java programs. When Sun Microsystemns invented the Java



SEC. L7 OPERATING SYSTEM STRUCTURE 61

programming fanguage, it also invented a virtwal machine (i.e.. a computer archi-
tecture) called the JVM (Java Virtual Machine). The Java compiler produces
code for JVM, which then typically 15 executed by a software JVM interpreter.
The advantage of this approach is that the JVM code can be shipped over _the
Internet to any computer that has a JVM interpreter and run there. If the compiler
had produced SPARC or Pentium binary programs, for example. they could not
have been shipped and run anywhere as easily. (Of course, Sun could have pro-
duced a compiler that produced SPARC binaries and then distributed a SPARC
interpreter, but JIVM is a much simpler architccture to interpret.) Another advan-
tage of using JVM is that if the interpreter is implemented properly, which is not
compleiely trivial, incoming JVM programs can be checked for safety and then
executed in a protected environment so they cannot steal data or do any damage.

1.7.4 Exokernels

With VM/370. each user process gets an exact copy of the actual computer.
With virtual 8086 mode on the Pentium, each user process gets an exact copy of a
different computer. Going one step further, researchers at M.LT. have built a sys-
tem that gives each user a clone of the actual computer. but with a subset of the
resources (Engler et al., 1995). Thus one virtual machine might get disk blocks 0
to 1023, the next one might get blocks 1024 1o 2047, and so on.

At the bottom layer, running in kernel mode. is a program called the exoker-
nel. Iis job is to allocate resources to virtual machines and ther check attermpts to
use them to make sure no machine is trying to use somebody eise’s resources.
Each user-leve!l virtual machine can run its own operating system, as on VM/370
and the Pentium virtual 8086s, except that each one is restricted to using only the
resources it has asked for and been allocated.

The advantage of the exokernel scheme is that it saves x layer of mapping. In
the other designs. each virtusl machine thinks it has its own disk, with blocks run-
ning from 0 to some maximum, so the virtual nmuchine monitor must mainiain
tables to remap disk addresses ¢and all other resources). With the exokerne!, this
remapping is not needed. The cxokernel need only keep track of which virtual
machine has been assigned which resource. This method still has the advantage
of separating the multiprogramming (in the exokernel) from the user operating
System code (in user space). but with less overhead. since all the exokernel has o
do is keep the virtual machines out of each other's hair.

1.7.5 Client-Server Model

VM/370 gains much in simplicity by moving a large part of the traditional
operating system code (implementing the extended machine) into a higher layer,
CMS. Nevertheless, VM/370 itself is still a complex program because stmulating a
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number of viriual 370s in their entiretj is not that simple (especially if you want
to do it reasonably effictently). _

A trend in modem operating systems is to take the idea of moving code up
into higher layers even further and remove as much as‘pﬂssi.ble from kernel mode,
leaving a minimal microkernel. The usual approach ts to implement most of the
operating system in user processes. To request a service, such as reading a block
of a file, a user process (now known as the client process) sends the request to a
server process, which then does the work and sends back the answer.

, ]

Cliant Client Process | Terminal Fila Memaory
e Usar mode
procass Rprtess sarvar S58rvar sarvar senser
\ . / Keme! mode
Microkerne) > _
Client obtains
service by

sending messages
to server processaes

Figure 1-27. The client-server model,

In this model, shown in Fig. 1-27, all the kernel does is handle the communi-
cation between clients and servers. By splitting the operating system up into
parts, each of which only handles one facet of the system, such as file service,
process service, terminal service, or memory service, each part becomes small
and manageable. Furthermore, because all the servers run as user-mode Droc-
esses, and not in kernel mode, they do not have direct access to the hardware. As
a consequence, if a bug in the file server is triggered, the file service may crash,
but this will not usuaily bring the whole machine down.

Another advantage of the client-server model is its adaptability to use in dis-
tributed systems (see Fig. 1-28). If a client communicates with a server by send-
ing it messages, the client need not know whether the message is handled locally
t its own machine, or whether it was sent across a network to a server on a
remote machine. As far as the client is concerned, the same thing happens in both
cases: a request was sent and a reply came back.

The picture painted above of a kernel that handles only the transport of mes-
sages from clients to servers and back is not completely realistic. Some operating
system functions (such as loading commands into the physical /O device regis-

“ters) are difficult, if not impossible, to do from user-space programs. There are
two ways of dealing with this problem. One way is to have some critical server
processes (e.g., I/O device drivers) actually run in kemnel mode, with complete
access to all the hardware, but still communicate with other processes using the
normal message mechanism,

The other way is to build a minimal amount of mechanism into the kemnel but
leave the policy decisions up to servers in user space (Levin et al., 1975). For
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Figore 1-28. The client-server modei in a distributed system.

example, the kernel might recognize that a message sent to a certain special
address means to take the contents of that message and load it into the /O device
registers for some disk, to start a disk read. ln this example, the kernel would not
even inspect the bytes in the message to see if they were valid or meaningful; it
would just blindly copy them into the disk’s device registers. (Obviously, some
scheme for limiting such messages to authorized processes only must be used.)
The split between mechanism and policy is an important concept; it occurs again
and again in operating systems in various contexts.

1.8 RESEARCH ON OPERATING SYSTEMS

Computer science is a rapidly advancing field and it is hard to predict where it
is going. Researchers al universities and industrial research labs are constantly
thinking up new ideas, some of which go nowhere but some of which become the
cornerstone of future products and have massive impact on the industry and users.
Telling which is which tarns out to be easier to do in hindsight than in rea time.
Separating the wheat from the chaff is especially difficult because it often takes
20-30 years from idea to impact.

For example, when President Eisenhower set up the Dept. of Defense's
Advanced Research Projects Agency (ARPA) in 1958, he was trying to keep the
Army from killing the Navy and the Air Force over the Pentagon’s research bud-
get. He was not trying to invent the Internet. But one of the things ARPA did
was fund some university research on the then-obscure concept of packet switch-
ing, which quickly led to the first experimental packet-switched network. the
ARPANET. It went live in 1969. Before long, other ARPA-funded research net-
works were connected to the ARPANET, and the Internet was born. The Internet
was then happily used by academic researchers for sending email to each other for
20 years. In the early 1990s, Tim Berners-Lee invented the World Wide Web at
the CERN research lab in Geneva and Marc Andreesen wrote a graphical browser
for it at the University of Illinois. All of a sudden the Internet was full of chatting
teenagers. President Eisenhower is probably rolling over in his grave.
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Research in operating systems has also led to dramatic changes in practical
systems. As we discussed earlier, the first commer_cial computer systems were all
baich systems, until M.I.T. invented interactive timesharing in the early 1960s.
Computers were all text-based until Doug Engelbart inv;nted the mouse and the
graphical user interface at Stanford Research lInstitute in the late [960s. Who
knows what will come next?

In this sectton and in comparable sections throughout the book, we will take a
briel look at some of the research in operating systems that has taken place during
the past 5 to 10 years, just to give a flavor of what might be an the horizon. This
introduction is certainly not comprehensive and is based largely or papers that
have been published in the top research journals and conferences because these
1deas have at least survived a rigorous peer review process in order to get pub-
lished. Most of the papers cited in the research sections were published by either
ACM, the IEEE Computer Society, or USENIX and are available over the Inter-
nei o {student) members of these organizations., For more information about
these organizations and their digital libraries, see

ACM hitp.//www.acm.org
|IEEE Computer Society hitp://www.computer.org
USENIX http://www.usenix.org

Virtually all operating systems researchers realize that current operating sys-
lems are massive, inflexible, unreliable. insecure, and loaded with bugs, certain
ones more than others (names withheld here to protect the guilty). Consegucntly,
there is a lot of research on how to build flexible and dependable systems, Much
of the research concerns microkernel systems. These systems have a minimal
kernel, so there is a reasonable chance they can be made reliable and be
debugged. They are also flexible because much of the real operating sysiem runs
as user-mode processes, and can thus be replaced or adapted easily, possibly even
during execution. Typically, all the microkernel does is handle low-level resource
management and message passing between the user processes.

The first generation microkemnels, such as Amoeba (Tanenbaum et al., 1990j,
Chorus (Rozier et al., 1988), Mach (Accelta et al., 1986), and V (Cheriton, 1988),
proved that these systems could be built and made to work., The second genera-
tion is trying to prove that they can not only work, but with high performance as
well (Ford et al,, 1996; Hartig et al., 1997; Liedike 1995, 1996; Rawson 1997: and
Zuberi et al., 1999). Based on published measurements, it appears that this goal
has been achieved.

Much kernel research is focused nowadays on building extensible operating
systems. These are typically microkernel systems with the ability to extend or
customize them in some direction. Some examples are Fluke (Ford et al., 1997),
Paramecium (Van Doorn et al., 1995}, SPIN (Bershad et al., 1995b), and Vino
(Selizer et al., 1996). Some researchers are also looki ng at how to extend existing
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systems (Ghormley et al.. 1998}, Many of these systems allow users to add their
own code to the kemel. which brings up the obvious problem of how to allow user
extensions in a secure way. Techmiques include interpreting the extensions, res-
mricting them to code sandboxes, using type-sate languages, and code signing
(Grimm and Bershad, 1997 and Sinall and Seltzer, 1998). Druschel ct al. {1997)
present a dissenting view, saying that too much effort is going into security for
user-extendable systems. In their view, researchers should figure out which
extensions are usetul and then juse make those a normal part of the kernel. without
the ability o have users extend the kernel on the fly,

Although one approach to eliminating bloated. buggy, unreliable operating
systems is (0 make them smaller, a more radical one is to eliminate the operating
system altogether.  This approach is being taken by the group of Kaashoek at
MLLT. in their Exokernel research. Here the idea is to have a thin layer of
software running on the barc metal, whose only job is to securely allocate the
hardware rescurces among the users, For example, it must decide who gets 10 use
which part of the disk and where incoming network packets should be delivered.
Everything else s up to user-level processes, making it possible to huild both
general-purpose and highly-specialized operating systems (Engler and Kaashoek,
1995; Engler et al., 1995: and Kaashoek et al., 1997).

1.9 OUTLINE OF THE REST OF THIS BOOK

We have now completed our introduction and bird’s-eye view of the eperating
system. It is time to get down to the details. Chapter 2 is about processes. It
discusses their properties and how they communicate with one anciher, It also
gives a number of detailed examples of how interprocess communication works
and how to avoid some of the pitfalls.

Chapter 3 is about deadlocks, We briefly showed what deadlocks are in this
chapter, but there is much more to say. Ways to prevent or avoid them are dis-
cussed.

In Chap. 4 we will study memory munagement in detail. The important topic
of virtual memory will be examined, along with closely related concepts such as
paging and segmentation.

Input/Output is covered in Chap. 5. The concepts of device independence and
device dependence will be looked at. Several important devices, inciuding disks,
keyboards, and displays, will be used as examples.

Then, in Chap. 6, we come to the all-important topic of file systems. To a
considerable extent, what the user sees is largely the file system. We will look at
both the file system interface and the file system implementation.

At this point we will have compieted our study of the basic principles of
single-CPU operating systems. However, there is more to say. especially uabout
advanced topics. In Chap. 7, we examine multimedia systems, which have 4 num-
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ber of properties and requirements that differ from conventional operating sys-
terns. Among other iterns, scheduling and the file system are affected by the
nature of multimedia. Another advanced topic is multiple processor systems,
including multiprocessors, parallel computers, and distributed systems. These
subjects are covered in Chap. 8. .

A hugely important subject 1s operating system secuority, which is covered in
Chap 9. Among the topics discussed in this chapter are threats (e.g., virnses and
worms), protection mechanisms, and security models.

Next we have some case studies of real operating systems. These are UNIX
(Chap. i0) and Windows 2000 (Chap. 11). The book concludes with some
thoughts about operating system design in Chap. 12.

1.10 METRIC UNITS

To avoid any confusion, it is worth stating explicitly that in this book, as in
computer science in general, metric units are used instead of traditional English
units (the furlong-stone-fortnight system). The principal metric prefixes are listed
in Fig. 1-29. The prefixes are typically abbreviated by their first letters, with the
units greater than | capitalized. Thus a 1-TB database occupies 10'2 bytes of
storage and a 100 psec (or 100 ps) clock ticks every 107'% seconds. Since milli
and micro both begin with the letter “m,” 1 choice had to be made. Normally,
“m” 1s for milli and “p" {the Greek letter mu) is for micro.

por— o

1 .I'%xp.

.I_?reﬂx

mdustry practice, the units have slightly
2'% (1024) rather

Explicit B Exp. Elbﬂl 1 l_‘_rﬁ i
|10 | 0.001 milli | 10° | 1000 | Kilo
(10 | 0.000001 _lmicro |40t | T - 1,000,000 , Mega
10| 0000000001 _ lpano {10 [ T .__.._11000,000,000 | Giga_
107"% | 0.000000000001 __ipico10% | ~_ 1.000,600,000,000 | Tera
_107% [ 0.000000000000001 | femto | 10" _..__1.000,000,000,000,000 | Feta
107 | 0.0000000000000000001 | atto | 10" . ~1.000,000,000,000,000,000 | Exa |
107_| 0:0000000000000000000001 | zepto | 10°' | 1,000,000,000,000.000,000,000 | Zetta
1077 | 0.0000000000000000000000001 | yoeto | 10%* | "1,000,000,000,600,000,000,000,000 | Yotta

Figure 1-29. The principal metric prefixes,

It is also worth pointing out that for measuring mMemory sizes, in Common
different meanings. There Kilo means
3 . ‘

than 10" {100(}) because memories are always a power of two.

Thus a 1-KB memory contains 1024 bytes, not 1000 bytes. Similarly, a 1-MB
memory contains 2% (].048,576) bytes and a |-GB memory contains 2
(1,073,741,824) bytes. However. a 1-Kbps communication line transmits 1000
bits per second and a 10-Mbps LAN runs at 10,000,000 bits/sec because these
speeds are not powers of two. Unfortunately, many people tend to mix up these
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two systems, espectally for disk sizes. To avoid ambiguity, in this book, we will
use the symbols KB, MB, and GB for 2'0, 220 apd 23° bytes respecli_vely, and the
symbols Kbps, Mbps, and Gbps for 10%, 10° and 10° bits/sec, respectively.

1.11 SUMMARY

Operating systems can be viewed from two viewpoints: resource managers
and extended machines. In the resource manager view, the operating system’s job
is 10 manage the different parts of the system efficiently. In the extended machine
view, the job of the system is to provide the users with a virtual machine that js
more convenient to use than the actual machine.

Operating systems have a long history, starting from the days when they
replaced the operator. to modern multiprogramming systems. Highlights include
early batch systems, multiprogramming systems, and personal COMPuULEr systems.

Since operating systems interact closely with the hardware, some knowledge
of computer hardware is useful to understanding them. Computers are built up of
processors, memories, and /0 devices. These parts are connected by buses.

The basic concepts on which all operating systems are built are processes,
memory management, I/0 management, the file system, and security. Each of
these will be treated in a subsequent chapter.

The heart of any operating system is the set of system calls that it can handle.
These tell what the operating system really does. For UNIX, we have looked at
four groups of system calls. The first group of system calls relates to process
creation and termination. The second group is for reading and writing files. The
third group is for directory management. The fourth group contains miscellane-
ous calls.

Operating systems can be structured in several ways. The most common ones
are as a monoltthic system, a hierarchy of layers, a virtual machine system, an
exokernel, or using the client-server model.

PROBLEMS

L. What are the two main functions of an operating system?
2. What is multiprogramming?

3. What is spooling? Do you think that advanced personal computers will have spooling
as a standard feature in the future?

4. On eurly computers, every byte of data read or written was directly handled by the

CPU (1.e., there was no DMA). What implications does this organization have for
multiprogramming?
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Why was timesharing nol widespread on second-gengration computers’?

The tamily of computers idea was introduced in the 1960s with the 1BM Sysiem/36()
manframes. Is this idea now dead as a doornail or does it live on?

One reason GUTs were initially slow o be adopted was the cost of the hardware
necded o support them. How much video RAM is needed to suppor o 25 line x 80
row character monochrome text screen? How much for a 1024 =< 768 pixel 24-hit
color bttimap? Whai was the cost of this RAM at 1980 prices ($5/KB)? How much ix
il now?

Which of the following instructions should be allowed only in kernel mode?

{0 Dhsable all interrupts.

{b) Read the time-of-day clock.
(£} Set the time-of-day clock.
td} Change the memory map.

List some differences between personal computer operating systems and mainframe
aperating systems,

A computer has a pipeline with four stages, Each stuge Lakes the same tume 10 do its
work. namely, | nsec. How many instructions per second can this machine execute?

AR alert reviewer notices a consistent spelling error in the manuscript of an operating
systems textbook that is about to go to press. The book has gpproxumatchy 700 pages.
cach with 50 lines of R0 characters each. How long will it ke to clectronicatly scin
the text for the case ol the master copy being 1 cach o the levels of memory of
Fig. 1-7? For internal storage methods. consider that the access Ginme oiven is per char-
acter. for disk devices assume the time is per block of 1024 characters. and for tape
assume the ume given is (o the start of the data with subsequent access at the same
speed as disk access.

In Fig. 19, the MM compares the incoming (virtualy address o the Jimit register,
causmng a fuelt if it i too large. An allernative design would be to first add the virtual
address to the base register and then compare the result W the (physicaly address in the
limit register. Are the two methods logically eguivalent? Are they equivalent in per-
formance !

When a user prograin makes a system cali w read or wrile i disk tile. i provides an
indication of which file it wants, a pointer 1 the duta bulter. and the count. Control is
then transferred to the operating system. which calls the appropriate deiver, Suppone
that the driver starts the disk and terminales until an mmterrupt occrrs, In the case of
reading from the disk, obviousiy the caller will have to be blocked (because there are
no data for it). What about the case of writing to the disk? Need the calier be block-
ing awailing completion of the disk ransfer?

What is the key difference between a Lrap and an interrupt’?

A computer uses the relocation scheme of Frg. 1-9tah A program is 10,000 bytes fong
and is loaded st address 40,000, What valucs do the base and i register get accord.
Ing {0 the scheme described in the ext?
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i6.

17.

18.

19.

20.

21.

22,

23

24,

26,

27.

28.

Why s the process table needed in a timesharing system? s it also needed in personal
compuier systems in which anly one process exasts, that process taking over the entire
machine until it is fimished?

[s there any reason why you might want 10 mount a file system on a nonempty direc-
tory? if <o, what 18117

For cach of the foHowing system calis, give a condition that causes it to fail: fork.
exac, and unlink.

Can the
count = write{fd, buffer, nbytes);
catl return any value in cownt other than nbyvres? If so, why?

A file whose Nie descriplor is fdf contains the following sequence of bytes: 3. 1.4, 1, 5,
9.2,6,3, 3,5 The following system calls are made:

Iseek{fd, 3, SEEK_SET);
read({fd, &buffer, 4);

wherc the iseek call makes a seek to byte 3 of the (ile. What does fuffer contain alter
the read has completed?

What 1s the essential dilfercnce between u block speciat file and a character special
File?

[n the example given in Fig. 1-17. the library procedure is called read and the syslem
call itself is called read. Is it essential that both of these have the same name? 1f not,
which one is more important?

The clicnt-server model is popular in distributed systems. Can it also be used in a
single-computer system??

To a programmer, a system call looks like any other call (o 2 library procedure. [s it
important that a programmer know which library procedures result in system calls”?
Under what circumstances and why?

Figure 1-23 shows that a number of UNIX system calls have no Win32 API cquiv-
alents. For each of the calls listed as having no Win3?2 equivalent. what are the conse-
quences for a programmer of converting a UNIX program to run under Windows?

Here are some questions for practicing unit conversions:

(4} How long is a micraycar in seconds™?

(h} Micrometers are olten called microns. How long is o gigamicron'?
{c) How many bytes are therg ina 1-78 memory”?

(d) The mass of the earth is 6000 yottagrams, What is that in kilogrums?

Write u shell that is similar o Fig. 1-19 but contains enough code that it actually
works 50 you can test it. You might also add some features such as redircenon of
input and output. pipes, and background Jubs.

It you have a personal UNIX-like system (Linux, MINIX. Free BSD. ewc.} available
that you can safely crash and reboot, write a shell seript that altempts to create an
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unlimited number of child processes and observe what happens. Before running the
cxperiment, type sync (o the shell to flush the file system buffers to disk 10 avoid ruin-
ing the file system. Note: Do not try this on a shared system without first geting per-
mission from the system administrator. The consequences will be instantly obvious so
yvou arg likely to be caught and sanctions may follow.

Iixamine and try to interpret the contents of a4 UNIX-like or Windows directory with
tool like the TINIX od program or the MS-DOS DEBUG program. Hint: How you do
this will depend upon what the OS allows. One wrick that may work is w0 create a
directory on a floppy disk with one operating system and then read the raw disk data
using a different operating system that ailows such access.



PROCESSES AND THREADS

We are now about to embark on a detailed study of how operating systems are
designed and constructed. The maost central concept in any operating system is
the process: an abstraction of a running program. Everything clse hinges on this
concept. and 1t is importani that the operating system designer {and student) have
a thorough understanding of what a process 1s as early as possible.

2.1 PROCESSES

All modern computcers can do several things at the xame time. While running
4 user program. a compuler can also be reading from a disk and outputting text o
a4 screen or printer. In g multiprogramming system. the CPU also switches from
program lo program, running each tor tens or hundreds of milliseconds. While,
strictly speaking. at any instant of time, the CPU is running only one program. in
the coursc of 1 second. it may work on several programs, thus giving the users the
tltusion of parailelism. Sometimes people speak of pseadoparallelism in this
coatext, to contrast it with the true hardware parallelism of multiprocessor sys-
tems (which have two or more CPUs sharing the same physical memory). Kecp-
ing track of multipie, paralle! activities is hard for people 0 do. Therefore, oper-
ating system designers over the years have evolved a conceptual model (sequen-
tial processes) that makes paratlelism easier to deal with. That model, its uses,
and some of its consequences form the subject of this chapter.

71
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2.1.1 The Process Model

In this model, all the runnable software on the computer, sometimes including
the operating system. 1$ organized into a number of sequential processes, or just
processes for short. A process is just an executing program, including the current
values of the program counter, registers, and vanables. Conceptually, each proc-
¢ss has its own virtual CPU. In reality, of course, the real CPU switches back and
forth from process to process. but to understand the system. it is much easier to
think about a collection of processes running in (pseudo) parallel, than to try to
keep track of how the CPU switches from program to program. This rapid
switching back and forth is called multiprogramming. as we saw in Chap. 1.

In Fig. 2-1{(a} wc see a computer muoltiprogramming four programs in
memory. In Fig. 2-1(b)} we sce four processes, each with its own flow of control
tie., its own logical program counter), and each one running mdependently of the
other ones. Of course, there is only one physical program counter, so when each
Process runs, its jogical program counter is loaded into the real program counter.
When it is finished for the time being, the physical program counter is saved in
the process’ logical program counter in memory. In Fig. 2-1{c) we see that
viewed over a long enough time interval, all the processes have made progress,
but at any given instant only one process is actually running.

Cne program counter

M Faur program counters
A Process

switch
B o~

4

_."’
4
Frocess

Bt cl Dt

Do O Q

JE— LT

Time — =

fa) {b} . {e)

Figure 2-1. {a) Multiprogramming of four programs. (b)) Conceplual model of
four independent, sequential processes. (¢) Only one program is active al once.

With the CPU swilching back and forth among the processes, the rate at
which a process performs its computation witl not be uniform and probably not
even reproducible if the same processes are run again. Thus, processes must not
be programmed with built-in assumptions about timing. Consider, for example,
an /O process that starts a streamer tape to restore backed up files, executes an
tdle loop 10,000 times to let it get up to speed, and then issues a command to read
the first record. If the CPU decides to switch to another process during the idle
loop, the tape process might not run again until after the first record was already
past the read head. When a process has critical real-time requirements like this,
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that is, particular events st occur within a specified number of milliseconds,
special measures must be taken to ensure that they do occur. Nunpaliy,ﬁuwever,
maost processes are not affected by the underlying muitiprogramming of the CPU
or the relative speeds of different processes.

The difference between a process and a program is subtle, but crucial. An
analogy make help here. Consider a culinary-minded computer scientist who is
baking a birthday cake for his daughter. He has a birthday cake recipe and a
witchen well stocked with all the input: flour, cggs. sugar, extract of vanilla, and
so on. In this analogy, the recipe is the program (i.e., an algorithm expressed in
some suitabie notation). the computer scientist is the processor (CPU), and the
cake ingredients are the input data. The process is the activity consisting of our
baker reading the recipe, fetching the ingredients. and baking the cake.

Now imagine that the computer scientist’s son comes running in crying, say-
ing that he has been stung by a bee. The computer scicntist records where he was
in the recipe (the state of the current process is saved), gcts out a first aid book.,
and begins following the directions in it. Here we see the processor being
switched from one process (baking) to a higher-priority process (administering
medical care), each having a different program (recipe versus first aid book).
When the bee sting has been taken care of, the computer scientist goes back 1o his
cake, continuing at the point where he left off,

The kcy idea here is that a process is an activity of some kind. It has a pro-
gram, input, output, and a state. A single processor may be shared among several
processes, with some scheduling algorithm being used to determine when to stop
work on one process and service a different one.

2.1.2 Process Creation

Operating systems need some way 1o make sure all the NECESsATY Processes
exist. In very simple systems, or in systems designed for running only a single
application (e.g.. the controller in 2 microwave oven). it muy be possible to have
ali the processes that will ever be needed he present when the system comes up,
In general-purpose systems, however, some way 1s needed to create and terminate
processes as needed during operation, We will now look at some of the issues.

There are four principal events that cause processes to be created:

1. System initialization.

2. Execution of a process creation system call by a running process.
3. A user request fo create a new pracess.
4.

Initiation of a batch job.

When an operating system is hooted, typically several processes are created.
Some of these are foreground processes, that is, processes that interact with
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{human) users and performm work for them. (thers are background processes.
which are not associated with particular users. but instead have some specitic
function. For example, one background process may be designed 1o accept
incoming email, sleeping most of the day bur suddeniy springing 1o life whtn
emall arrives. Another background process may be designed to accept incoming
requests for Web pages hosted on that machine, waking up when a request arrives
to service the request. Processes that stay in the background to handle some
activity such as email, Web pages, news, printing, and so on are called daemons.
Large systems commonly have dozens of them. [n UNIX, the ps program can be
used (o list the running processes. In Windows 95/98/Me. typing CTRL-ALT-
DEL once shows what's running. In Windows 2000, the task manager is used.

In addition to the processes created at boot time, new processes can be created
afterward as well. Often a running process will issue system cails 1o credte one or
more new processes to help it do its job. Creating new processes is particnlarly
useful when the wark to be done cun easily be formulated in terms of several
related, but otherwise independent interacting processes. For example, il a large
amount of data is being feiched over a network fur subsequent processing, it may
be convenient to create one process to feteh the duta and put them in a shared
butter while a second process removes the data itemns and processes them. On g
multiprocessor, allowing cach process to run on a different CPU may also make
the job go faster.

6 Interactive systems, users can starl a program by yping a command or
(double) clicking an icon. Taking either of these actions starts o new process and
runs the selected program in it. o command-based UNIX systers running X Win-
dows, the new process takes over the window in which it was started, In Micro-
soft Windows, when u process is staried it does net have a window, but it can
create one (or more) and most do. in both svstems. users may have multiple win-
dows open at once, cach running some process. Using the mouse. the user can
selecl a window and inleract with the process, for cxample, providing input when
needed.,

The last sitvation in which processes are created applies only to the baich svs-
tems found on large mainframes. Here users can submil baich Jobs o the system
(possibly remotely). When the opcrating system decides that it has the resources
to run another job, it creates a4 new process and runs the next Joub trom the input
queue in If.

Technically. in all these cases. g new process 1s created by having an existing
PrOCESS execute a process creation system call. That process may be a running
USer process, a system process invoked from the kevboard or mousc. or a batch
manager process. What that process does is execute a system call 1o create the
new process. This system call tells the operating RYSIEID 1O CTedte a New process
and indicates, directly or indirectly, which program to tvn in it

In UNIX. therc is only one system call to create a pew process: fork. This call
creates an exact clone of the calling process. After the fork, the rwo processes, the
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parcnt and the child, have the same memory image, the same Lt:nviruﬂment Nirmngs.
and the same open files. That is all there 1. Usually, the child process then exe-
cutes execve or a similar system call to change 1ts memory image and run a new
program. For exampie, when a user types a command, say, sort, to the shf:lL thg
shell forks off a child process and the child executes sort. The reason for this
two-step process 15 to allow the child o manipulate its file descriplors after the
fork but before the execve o accomplish redirection of standard input. standard
output, and standard error.

In Windows, in contrast, a single Win32 function call, CreateProcess. han-
dles both process creation and loading the correct program into the new process.
This call has 10 parameiers, which include the program to be executed, the com-
mand line parameters to feed that program, various security attributes. bits that
control whether open files are inherited, prioritv information, a specification of
the window to be created for the process (if any), and a pointer to a structure in
which information aboul the newly created process is returned to the caller. In
addition to CreateProcess, Win32 has about 100 other functions for managing
and synchronizing processes and related topics.

In both UNIX and Windows, after a process is created. both the parent and
child have their own distinct address spaces. If either process changes a word in
its address space. the change is not visible to the other process. In UNIX, the
child’s initial address space is a copy of the parent’s, but there are two distinet
address spaces involved; no writable memory is shared (some UNIX implementa-
lions share the program text between the two since that cannot be modified), 11 is.
however. possible for a newly created process to share some of ils creator’s other
resources, such as open files. In Windows. the parent’s and child’s address spaces
arc different from the start.

2.1.3 Process Termination

After a process has been created. it starts running and does whatever its job js,
However, nothing lasts forever, not even processes. Sooner or later the new proc-
ess will terminate, nsually due 1o one of the following conditions:

1. Normal exit (voluntary).

2. Error exit (voluntary).
3. Faual error (involuntary).
4. Killed by another process (tnvoluntary).

Most processes terminate because they have done their work. When a com-
piler has compiled the program given (o it, the compiler executes a system call 10
tell 1the operating systemn that it is finished. This call is exit in UNIX and ExitPro-
cess in Windows. Screen-oriented programs also support voluntary termination.
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Word processors, Internet browsers and similar programs always have an icaon or
menu item that the user can click to tell the process to remove any temporary files
tt has open and then terininate.

The second reason for (enmunation 1s that the process discovers a fatal error.
For exampie, if a user types the command

cc foo.c

to compile the program foo.¢ and no such file exists, the compiler simply exits.
Screen-oricnted interactive processes generally do not exit when given bad
parameters. Instead they pop up a dialog box and ask the user to try again,

The third reason for termination is an error caused by the process. often due to
a program bug. Examples include executing an illegal instruction, referencing
nonexistent memory, or dividing by zero. In some systems (e.g.. UNIX), a process
can teit the operating system that it wishes to handle certain errars itself, in which
case the process is signaled {interrupted) instead of terminated when one of the
Errors OCCUrs.

The fourth reason a process might tenminate is that a process executes a SYS-
tem call telling the operating system to kill some other process. In UNIX this call
is kill. The corresponding Win32 function is TerminateProcess. In both cases. the
killer must have the necessary authorization to do in the killee, In SOME systems.
when a process terminates, either voluntarily or otherwise, all processes 1t created
are immediately killed as well. Neither UNIX nor Windows works this way, how-
ever,

2.1.4 Process Hierarchies

In some systems, when a process creates another Process, e parent process
and child process continue to be associated in certain ways. The child process can
itself create more processes. forming a process hierarchy. Note that unlike plants
and animals that use sexual reproduction, a process has only one parent (but zero,
one, two, or more children).

In UNIX, a process and all of its children and further descendants (ogether
form a process group. When a user sends a signal from the keyboard, the signal is
delivered to all members of the process group currently associated with the key-
board (usually all active processes that were created in the current window). Indi-
vidually, each process can catch the signal. ignore the signal. or take the default
action, which is to be killed by the signal.

As another example of where the process hierarchy plays a role. let us look at
how UNIX initializes itself when it is started. A special process. called inir, is
present in the boot image. When it starts running. it reads a file telling how many
terminals there are. Then it forks off onc new process per terminal. These proc-
esses wail for someone to log in, If a login is successful. the login process cxe-
cutes a shell to aceept commands. These commands may start up nore processes,
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and so forth. Thus, all the processes in the whole system belong to a single tree,
with fnfr at the root.

In contrast, Windows does oot have any concept of a process hierarchy. All
processes are equal. The only place where there is something like a process
hicrarchy is that when a process is created, the parent Is given a special token
(called a handle) that it can use to control the child. However, it is free to pass
this token to some other process, thus invalidating the hierarchy. Processes in
UNIX cannot disinherit their children.

2.1.5 Process States

Although each process is an independent entity, with its own program counter
and internal state, processes often need to interact with other processes. One
process may generate some output that another process uses as input. In the shell
comumand

cat chapter1 chapter2 chapter3 | grep tree

the first process, running car, concatenaies and outputs three files. The second
process, running grep, selects all lines contajning the word “trec.” Depending on
the relative speeds of the two processes (which depends on both the relative com-
plexity of the programs and how much CPU time each one has had), it may hap-
pen that grep is ready to run, but there is no input waiting for it. It musi then
biock until sore input is availablfe.

When a process blocks, it does so because logically it cannot continue, typi-
cally because it is waiting for input that is not yet available. Tt is also nossible for
a process that is conceptvally ready and able to run to be stopped because the
operating system has decided to allocate the CPU to anather process for a while.
These two conditions are completely different. In the first case, the suspension is
inkerent in the problem {you cannot process the user's command line until it has
been typed). In the second case, it is a technicality of the system (not enough
CPUs to give each process its own private processor). In Fig. 2-2 we see a state
diagram showing the three states a process may be in:

1. Running (actually using the CPU at that instant).

Ready (runnable: temporariiy stopped to let another Process run),

W

Blocked {unable to run until some cxternal event happens).

Logically, the first two stales are similar. In both cases the process s willing to
run. only in the second one, there is temporarily no CPU available for it. The
third state is different from the first two in thal the process cannot run, even if the
CPU has nothing else to do.

Four transitions are possible among these three states. as shown. Transition |
occurs when a process discovers that it cannot continue. In some systems the
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Runming

1. Process plocks for input

2. Scheduler picks ancther process
3. Scheduler picks this process

4 nput becomes available

Figure 2-2, A process can be in running. blocked. or ready state. Transitions

botween these states are as shown
process must execule a system call, such as block or pause, o get 1ot blocked
state. In other systems, including UNIX. when a process reads trom a pipe or spe-
clal hile (e.g.. a termunal) and there is no input available, the process is aulomati-
cally blocked.

Transitions 2 and 3 arc cavsed by the process scheduler, a part ol the operat-
mg system, without the process cven knowing about them. Transition 2 occurs
when the scheduler decides that the running process has run long enough, and it is
ume 1o let anather process have some CPU time. Transition 3 occurs when all the
other processes have had their fair share and it is time for the first process to get
the CPU to run again. The subject of scheduling, that is, deciding which process
should run when and for how long. is an tmportant one; we will look at it later in
this chapter. Many algorithms have been devised to try to balance the competing
demands of efficiency for the system as a whole and fairness to individual
processes. We will study some of them later in this chapter.

Transition 4 occurs when the external event for which a process was waiting
(such as the arrival of some input) happens. It no other process is running at that
instant, transition 3 will be triggered ard the process will start running. Otherwise
it may have to wait in ready state for a little while onti! the CPU is available and
its turn comes.

Using the process model. it becomes much casier 1o think about what is goOing
on inside the system. Some of the processes run programs that carry oul com-
mands typed in by a user. Other processes are part of the system and handle 1asks
such as carrying out requests for file services or managing the details of ruinning a
disk or a tape drive. When a disk interrupt occurs, the system makes a decision to
stop running the current process and run the disk process, which was blocked
waiting for that interrupt. Thus. instead of thinking about interrupts, we can think
about user processes, disk processes, ferminal processes. and so on. which block
when they are waiting for something to happen. When the disk has been rcad or
the character typed, the process waiting for it is unblocked and is eligible 1o run
again.

This view gives rise to the model shown in Fig, 2-3. Here Lhe lowest level of
the operating system is the scheduler, with variety of processes on top of it. All
the interrupt handling and detaiis of actually starting and stopping processes are
bidden away in what is here called the scheduler. which is actually not much
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L

code. The rest of the operating system 1s nicely structured in process form. Few
real systems are as nicely structured as this, however.

Frocesses

Scheduler

Figure 2-3. The lowest laver of a process-structured operating system handles
interrupts and scheduling. Above that layer are sequential processes.

2.1.6 Implementation of Processes

To implement the process model. the operating system maintains a table (an
array of structures), called the process table, with one entry per process. (Some
authors call these entries process contrel blocks.) This entry contains informa-
tion about the process’ stale, its program counter. stack pointer, memory alloca-
tion, the status of its open files, its accounting and scheduling information, and
everything else about the process that must be saved when the process 15 switched
from running to ready or blocked state so that it can be testarted later as if it had
never been stopped.

Figure 2-4 shows some of the more important fields in a typical system. The
fields in the first column relate to process management. The other two columns
relate 1o memory management and file management, respectivety. It should be
noied that precisely which fields the process table has is highly system dependent,
but this figure gives a general idea of the kinds of information needed.

Now that we have looked at the process table, it is possible to explain a litde
more about how the iltusion of multiple sequential processes is maintained on a
machine with one CPU and many /O devices. Associated with ecach O device
ciass {e.g.. floppy disks, hard disks, timers, terminals) is & location {often near the
bottom of memory) cailed the interrupt vector. It contains the address of the
interrupt service procedure. Suppose that user process 3 is running when a disk
mterrupt occurs. User process 3°s program counter. program status word, and
possibly one or more registers are pushed onto the (current) stack by the interrupt
hardware. The computer then jumps to the address specified in the disk interrupt
vector. That s all the hardware does, From here on. it is up to the softwire, in
particular, the interrupt service procedure.

All mmterrupts starl by saving the registers, often in the process table entry for
the cument process, Then the information pushed onto the stack by the intercupt is
removed and the stack pointer is set to point 10 a lemporary stack used by the
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| Process management Memory management | File management
| Registers Pointer to text segment | Root directory
Program counter i Pointer {0 data segment Working directory
Program status word . Pointer to stack segment | File descriptors
Stack pointer : User iD
. Process state Group ID
Priority ;
Scheduling parameters i
Process iD '

Farent process
Process group
Signals |
Time when process started |
CPU time used i
Children's CPU time
Time of next alarm

Figure 2-4. Some of the fields of a typical process table entiy.

process handter. Actions such as saving the registers and setting the stack pointer
cannot even be expressed in high-level languages such as C. so they are per-
formed by a small assembly language routine. usually the same one for all inter-
rupts since the work ol saving the registers is identical. no matter what the cause
of the interrupt is,

When this routine is finished, it calls a C procedure to do the rest of the work
for this specific interrupt type. (We assume the operating system is written in C.
the usual choice for all real operating systems.) When it has done ils job, possibly
making some process now ready, the scheduler is called to see who to run next.
After that, control is passed back to the assembly language code to load up the
registers and memory map for the now-current process and start it running. Inter-
rupt handling and scheduling are summarized in Fig. 2-5. 1t is worth noting that
the details vary somewhat from system (o svstem.

! . Hardware stacks program counter. etc. I
. Hardware loads new program counter from interrupt vector,
. Assembly language procedure saves registers.

. Assembly language procedure sets up new stack.

. G interrupt service runs {typically reads and bufiers input). i
. Scheduler decides which process is to run next.

. C procedure returns to the assembly code.

W NDU AW N

L

Figure 2-5, Skeleton of what the lowest level of the QpCTHIngE system Jdoes
when an tnterrupl oceurs.
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2.2 THREADS

In traditional operating systems, each process has an address space and # sin-
gle thread of control. In fact, that is almost the definition of a process. Neverthe-
less. there are frequently situations in which it is desirable to have multipie
threads of control in the sume address space running in quasi-parallel, as though
they were separate processes (except for the shared address space}. In the follow-
ing sections we will discuss these situations and their implications,

2.2.1 The Thread Model

The process model as we have discussed it thus far is based on two indepen-
dent concepts: resource grouping and execution. Sometimes it is nseful to
separate them; this is where threads come in,

One way of looking at a process is that it is way o group related resources
together. A process has an address space containing program text and data. as
well as other. resources. These resource may include open files, child processes,
pending alarms, signal handlers, accounting information, and more. By putting
them together in the form of a process, they can be managed more easily.

The other concept a process has is a thread of execution, usually shortened 1o
just thread. The threcad has a program counter that keeps track of which instruc-
tion to execute next, It has registers, which hold its current working variables. It
has a stack, which contains the execution history, with one frame for each pro-
cedure called but not yet returned from. Although a thread must execute in some
process, the thread and its process are different concepts and cun be treated
separately. Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

What threads add 10 the process model is to allow multiple cxecutions to take
place in the same process environment. to a large degree independent of one
another. Having multiple threads running m parallel in one process is analogous
Lo having multiple processes running in parallel in one computer. In the former
case, the threads share un address space. open files. and other resources. In the
latter case, processes share physical memory, disks, printers, and other resources.
Because threads have some of the properties of processes, they are sometimes
called lightweight processes. The term multithreading is also used to describe
the situation of allowing muitiple threads in the same process.

In Fig. 2-6(a) we see three traditional processes. Each process has its own
address space and a single thread of control. In contrast, in Fig. 2-6(b) we see a
singie process with threc threads of control. Although in both cases we have three
threads, in Fig. 2-6(a) each of them operates in a different address space, whercas
in Fig. 2-6(b} all three of them share the same address space.

When a multithreaded process is run on a single-CPU system, the threads take
turns running. In Fig. 2-1, we saw how multiprogramming of processes works,
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Process 1 Process 1 Process 1 Process
\ | | i
User )
space
Thread Thread
Kernel J-
Kernat
space 1 rearmel J

(a) (b)

Figore 2-6. (u) Threc processes cach with vne lhread. by One process wiih
three threads.

By switching back and forth among multipie processes. the system gives the 1liu-
sion of separate sequential processes running in paraliel. Mulsithreading works
the same way. The CPU switches rapidly back and forth among the threads pro-
viding the illusion that the threads are tunning in parallel. aibeit on a slower CPU
than the real one. With three compuie-bound threads in a praocess, the threads
would appear to be running in parallel, each one on a CPU with one-third the
speed of the real CPU.

Different threads in a process are not quite as independent as different
processes. All threads have exactly the same address space. which means tha
they also share the same global variables. Since every thread can access every
memory address within the process’ address space. one thread can read, write, or
even completely wipe out another thread’s stack, There is no protection between
threads because (1) it is impossible. and (2) it should not be necessary. Unlike
different processes. which muy be from different users and which may be hostile
to one another, a process is always owned by a single vser. who has presumably
created multiple threads so that they can cooperate. not fight. In addition to shar-
ing an address space, all the threads share the same set of open fles. child
processes, alarms, and signals, ete. as shown in Fig, 2-7. Thus (he organization of
Fig. 2-6(a} would be uscd when the three processes are cssentially unrelated,
whereas Fig. 2-6(b) would be appropriate when the three threads are actually part
of the same job and are actively and closely coaperating with cach other.

The items in the first column are process properties. not thread properties.,
For exampie, if one thread opens a file, that file is visible to the other threads in
the process and they can read and write it. This is logical since the process is the
tnit of resource management, not the thread. Tf cach thread had its own address
space, apen tiles, pending alarms, and so on. it would be a separite process. What
we are trying to achieve with the thread concept is the ability for muitiple threads
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e P.Er thré'éd items .

 Per process items

. Address space . Program counter
| Global variables . Registers _
Open files T Stack _ i
: Child processes State :

: Pending alarms i
" Signais and signal handiers |

——— e ————— —_—ra - . i —— - — e — —_

Figure 2-7. The first column lists some items shared by all threads in a process.
The second one lists some items privale to cach thread,

of execution to share a set of resources so they can work together closely to per-
lorm some task.

E.ike o traditional process {ie., a process with only onc thread), a thread can
be in any one of several states: runnimg, blocked, ready. or terminated. A FUnning
thread currently has the CPU and is active. A blacked thread is watting for some
event te unblock it. For example. when a thread performs a system call to read
from the keyboard, it is blocked until input is typed. A thread can block waiting
for some external event to happen or for some other thread to unblock it. A reqdy
thread is scheduled to run and will as soon as its tum cories up. The transitions
between thread states are the same as the transitions between process states and
are illustrated in Fig. 2-2.

It is important to realize that each thread has its own stack. as shown i
Fig. 2-8. Each thread’s stack contains one frame for each procedure called but not
yet returned from. This frame contains the procedure’s local variables and the
return address to use when the procedure call has finished. For example, if pro-
cedure X calls procedure Y and this one calls procedure Z, while Z is executing the
frames for X, ¥, and Z will all be on the stack. Fach thread will generally call dif-
ferent procedures and a ihus a different execution history. This is why is thread
needs its own stack,

When multithreading is present, processes normally start with a singte threud
present, This thread has the ability to create new threads by calting u library pro-
cedure, for example, fthread_create. A parameter 10 thread_create typically
specifies the name of a procedure for the new thread to run. It is not NeCessary {or
even possible) to specify anything about the new thread’s address space SIce it
automatically runs in the address space of the creating thread. Sometimes threads
are hierarchical. with a parent-child refationship. but often no such relationship
exists, with all threads being equal. With or without a hierarchical reludionship,
the creating thread is usually returned a thread identifier that names the new
thread.

When a thread has finished its work. it can exit by calling a library procedure,
say. thread _exir. It then vanishes and is no tonger schedulable. In some thread



84 PROCESSES AND THREADS CHAP. 2

Thread 2

Thread 3

1
Th reFd \ 7

|~ Process

Thread 3's stack

B8
hess @

Kernel

Figure 2-8. Each thread hay its own stack.

systems, one thread can wait for a (specific) thread to exit by calling a procedure,
for example, thread_wait. This procedure blocks the calling thread untit a
(specific) thread has exited. In this regard, thread creation and termination is very
much like process creation and rermination. with approximately the same options
as well.

Another common thread call is thread _vield. which allows a thread to volun-
tarily give up the CPU to let another thread run. Such a call is important because
there is no clock interrupt to actually enforce timesharing as there is with
processes. Thus it is important for threads to be polite and voluntarily surrender
- the CPU from ume to time to give other threads a chance to run, Other calls
allow one thread to wait for another thread to finish some work, for a thread 1o
announce that it has finished some work, and so on.,

While threads are often useful, they also introduce a number of complications
into the programming model. To start with, consider the effects of the UNIX fork
system call. If the parent process has multiple threads, should the child also have
them? It not. the process may not function properly, since alli of them may be
essential.

However. if the child process gets as many threads as the parent. what hap-
pens 1f a thread in the parent was blocked on a read call, say, from the keyboard?
Are two threads now blocked on the keyboard, one in the parent and one in the
child? When a line is typed, do both threads get a copy of it? Only the parent?
Only the child? The same problem exists with open network conpections.

Another class of problems is related to the fact that threads share many data
structures, What happens if one thread closes a file while another one is still read-
ing from it? Suppose that one thread notices that there is too little memnory and
starts allocating more memory. Part way through. a thread switch occurs, and the
new thread also notices that there is too tittle memory and aiso starts allocating
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more memory. Memory will probably be allocated twice. These problems can be
solved with some etfort, but careful thought and design are needed to make mul-

tithreaded programs work correctly.

2.2.2 Thread Usage

Having described what threads are, it is now tme to explain why anyone
wants them. The main reason for having threads is that in many applications.
muluple activitics are going on at once. Some of these may block from time to
iime. By decomposing such an application into multiple sequentra! threads that
run in quasi-parallel, the programming model hecomes simpler.

We have seen this argument before. It is precisely the argument for having
processes. Instead of thinking about interrupts, timers, and context swiiches. we
can think about parallel processes. Only now with threads we add a new clement:
the ability for the parallel entities to share an address space and all of its data
amoeng themselves. This ability is essential for certain applications, which is why
having multiple processes (with their separate address spaces) will not work.

A second argument for having threads is that since they do not have any
resources attached to them, they are easier 10 create and destroy than processes.
In many sysiems, creating a thread goes 100 times faster than creating a process.
When the aumber of threads needed changes dynamically and rapidly, this pro-
perty is useful.

A third reason for having threads is also a performance argument. Threads
yield no performance gain when all of them are CPU bound. but when there is
substantial computing and also substantial VO, having threads aliows these activi-
ties to overlap, thus speeding up the application.

Finally, threads are useful on systems with multiple CPUs. where real paral-
lelism is possible. We will come back to this issue in Chap. 8.

It is probably easiest to sce why threads are useful by giving some concrete
examples. As a first example, consider a word processor. Most word processors
display the document being created on the screen formatted exactly as it will
appear on the printed page. In particular, all the line breaks and page breaks are
in their correct and (inal position so the user can inspect them and change the
document if need be (e.g.. to eliminate widows and orphans—incomplele top and
bottor lines on a page, which are considered esthetically unpleasing).

Suppose that the uscr is writing a book. From the author's point of view, it is
casiest to keep the entire book as a single file to make it casier to search for
topics, perform global substitutions, and o on. Adternatively, each chapter might
be a separale file. However. having every section and subsection as a separafe
file is a real nuisance when global changes have to be made to the entire book
stnce then hundreds of files have to be individually edited. For example, if pro-
posed standard xxxx .is approved Just betore the book 20€s 10 press, all
occurrences of “Draft Standard xxxx* have to be changed to “Standard xxxx™ at
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the last minute. If the entire book ts one file, typically a single command can do
all the substitutions. In contrast, if the book 15 spread over 300 files. each one
must be edited separaiely.

Now consider what happens when the user suddenly deletes one sentence
from page 1 of an 800-page document. After checking the changed page to make
sure it 1s cofrect, the user now wants to make another change on page 600 and
types mm a command telling the word processor to go to that page (possibly by
searching for a phrase occurring only there). The word processor is now forced to
reformat the entire book up to page 600 on the spot because it docs not know what
the first line of page 600 wili be until it has processed all the previous pages.
There may be a substantial delay before page 600 can be displayed, leading to an
unhappy uscr.

Threads can help here. Suppose that the word processor is writlen as a two-
threaded program. One thread interacts with the vser and the other handles refor-
matting in the background. As soon as the sentence is deleteid from page 1. the
interactive thread tells the reformatiing thread to reformat the whole book.
Meanwhile, the interactive thread continues to listen to the keyboard and mouse
and responds to simple commands like scrolting page | while the other thread is
computing madly in the background. With a little luck, the reformatting witl be
completed before the user asks to see page 600, 5o it can be displayed instantlv,

While we are at it, why not add a third thread? Many word processors have a
feature of automatically saving the entire file to disk every few minutes to protect
the user against losing a day's work in the event of a program crash, system crash,
or power failure. The thirg thread can handle the disk backups without interfering
with the other two. The situation with three threuds is shown in Fig. 2-9,

Kernel

CHsk

Figure 2-9. A word processor with three threads,
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It the program were single-threaded. then whenever a dis]lr; backup started,
commands from the keyboard und mouse would be ignored untl the backup wils
finished. The user would perceive this as sluggish performance.  Allernatively.
keyboard and mouse events could interrupt the disk backup. allowing good perfor-
mance burt leading 10 a complex interrupl-driven programming model. With three
threads, the programming model 1s much simpler. The first thread just interacts
with the user. The second thread reformals the document when 1old to. The third
thread writes the contents of RAM to disk periodically.

It should be clear that having three separate processes would not work here
because all three threads need to operate on the document. By having three
threads instead of three processes. they share a common memory and thus all have
access to the document being edited.

An analogous situation exists with many other interactive programs. For
example, an electronic spreadsheet is a program that allows a user to maintain a
matrix, some of whose elements are data provided by the user. Other elements
are computed based on the input data using potentially complex formulas. When
a user changes one element, many other elements may have to be recomputed. By
having a hackground thread do the recomputation, the interactive thread can allow
the user to make additional changes while the computation is going on. Similarly,
a third thread can handle periodic backups to disk on its own.

Now consider yet another example of where threads are useful: a server [or a
World Wide Web site. Requests for pages come in and the requested page is sent
back to the client. At most Web sites. some pages are more commonly accessed
than other pages. For example. Sony’s home page is accessed far more than a
page deep in the tree containing the technical specifications of some puarticular
camcorder. Web servers use this fact to improve performance by maintaining a
collection of heavily used pages In main mmemory 1o eliminate the need to g0 to
disk Lo get them. Such a collection is called a eache and is used in many other
contexts as weli.

One way Lo organize the Web seever is shown in Fig. 2-10(a). Here one
threud. the dispatcher, reads incoming requests for work from the network. Alfter
examining the request, it chooses an idle (1.c.. blocked) worker thread und hands
it the request, possibly by writing a pointer 10 the message into a special word
associated with each thread. The dispatcher then wakes up the sleeping worker,
moving it from blocked state 1o ready state.

When the worker wakes up, it checks to see if the request can be satistied
from the Web page cache. 1o which all threads have access. [f not, i starts o read
operation 1o get the page from the disk and blocks until the disk aperation com-
pletes. When the thread blocks on the disk operation. another thread is chosen to
run, possibly the dispatcher, in order 10 acquire more work, or possibly another
worker that is now ready to run.

This model allows the server to be written as a collection ot sequential
threads. The dispatcher’s program consists of an infinite loop for getting & work
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Web server process
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Figure 2-10. A multithreaded Web server.

request and handing it off to a worker. Each worker’'s code consists of an infinite
loop consisting of accepting a request from the dispatcher and checking the Web
cache io see if the page is present. If so, it is returned 1o the client and the worker
blocks waiting for a new request. If not, it gets the page from the disk. returns i
to the client, and blocks waiting for a new request.

A rough outline of the code is given in Fig. 2-11. Here. as in the rest of this
book, TRUE is assumed to be the constant 1. Also, buf and poge are structures
appropriate for holding a work request and a Web page, respectively.

while (TRUE) { while (TRUE) {
get_next. request{&buf): wait for work{&buf}
handoff_work{&bhuf); look _for_page_in_cache(&buf, &page);
} if (page_not_in . cache(&page))

read page_from disk(&buf, &page);
return page{&page);

{a) (b)

Figure 2-11. A rough outline of the code for Fig. 2-10. (a} LDrispatcher thread.
(b) Worker thread,

Consider how the Web server could be written in the absence of threads. One
possibility is to have it operate as a single thread. The main loop of the Web
SSrver gels a request, examines i, and carries it out to completion before getting
the next one. While waiting for the disk, the server is idle and does not process
any other incoming requests. If the Web server is running on @ dedicated
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machine, as ts commonly the case, the CPU is simply idle while the Web server s
waiting for the disk. The net result is that many fewer requests/sec can be pro-
cessed. Thus threads gain considerable performance, but each thread 1s pro-
grammeed sequentially, in the usual way.

So far we have seen two possible designs: a multithreaded Web server and a
single-threaded Web server. Suppose that threads are not availabic but the system
designers find the performance loss due o single threading unacceptable. IT a
nonblocking version of the read sysiem call is available, a third approach is possi-
ble. When a request comes in, the one and only thread examines it. [f it can be
satisfied from the cache, fine, but if not. a nonblocking disk operation is started.

The server records the state of the current reguest in a table and then goes and
gets the next event. The next event may either be u request for new work or a
reply from the disk about & previous operation. If it is new work, that work is
started. If it is a reply from the disk, the relevant information is fetched from the
table and the reply processed. With nonblocking disk 170, a reply probably will
have to take the form of a signal or interrupt.

In this design, the “sequential process™ model that we had in the first (wo
cases 1s lost. The state of the computation must be explicitly saved and restored
it the table every lime the scrver switches from working on one request to
another. In effect, we are simulating the threads and their stacks the hard way. A
design tike this in which each computation has a saved state and there exists some
set of events that can occur 1o change the state is called a finite-state machine.
This concept is widely used throughout computer science.

It should now be clear what threads have to offer. They make it possible 1o
retain Lhe idea of sequential processes that make blocking system cails (e.g.. for
disk F()) and still achieve parallelism. Blocking system calls make programming
easier and parallelism improves performance. The single-threaded server retains
the ease of blocking system calls but gives up performance. The third approach
achieves high performance through parallelism but uses nonblocking calls and

interrupts and is thus is hard to program. These models arc surimarized in
Fig. 2-12,

' Model | Characteristics
Threads Parall_elism. blocking system calls

| Single-threaded process | No parallelism, blocking system calls
_Finite-state machine

Parallelism. nonblocking system calls, interrupts |

Figure 2-12. Three ways to construct a server.

A third example where threads are useful is in applications that must process
very large amounts of data. The normal approach is to read in a block of data,
process 1t, and then write it out again. The problem here is that if only blocking
system calls are available, the process blocks while data are coming in and data
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are going out. Having the CPU go idie when there is lots of computing o do is
clearly wasteful and should be avorded if possible. _ |

Threads offer a solutton. The process could be swuctuwred with an input
thread, a processing thread. and an output thread. The input thread rgads‘ data ifr}m
an input buffer. The processing thread takes data out of the input buf.fcn
processes them, and puts the results in an output bufter. The output bufter writes
these results back to disk. In this way. input, output. and processing can all be
going on at the same lime. Of course, this mode} only works if a system call
blocks only the calling thread. not the entire process.

2.2.3 Implementing Threads in User Space

There arc two main ways to implement a threads package: 1n user space and
in the kernel. The choice is moderately controversial, and a hiybrid implementa-
tion Is also possible. We will now describe these methods. along with their
advantages and disadvanmages.

The first method is to put the threads package entircly in user space. The ker-
nel knows nothing about them. As far as the kernel is concerned, It is managing
ordinary, single-threaded processes. The first. and maost obvious, advantage is
that a user-level threads package can be implemented on an operating system that
does not support threads. All operating systems used to fall info this catcgory. and
even now some still do.

All of these implementations have the same general structure, which iv illus-
trated in Fig. 2-13(a). The threads run on 1op of a run-ttime system. which is 4 col-
lection of procedures that manage threads. We have seen four ol these already:
thread _create, thread _exit, thread _wair, and thread_ vield. but usually there are
more.

When threads are managed in user space. each process needs its own private
thread table to keep track of the threads in that process. This table is analogous
to the kernel’s process table, except that it keeps track only of the per-thread pro-
perties such the each thread’s program counter, stack poInter. registers, state. etc.
The thread table is managed by the run-time systern. When a thread is moved to
ready state or blocked state, the information needed to restarl it is stored in the
thread table. exactly the sume way as the kermel stores information about
processes in the process table.

When a thread does something that may cause it to become blocked locally.
for example, waiting for another thread in its process W complele some work, it
calls a run-time systemn procedure. This procedure checks to see il the thread
must be put into blocked state. If so. it stores the thread's registers (i.e.. its own)
it the thread (able, looks in the table for a ready thread o run. and reloads the
machine registers with the new thread’s suved vajues. A% so0n as the stack
pointer and program counter have been switched. the new thread comes to lite



THREADS 91

[
]

SEC
Frocess Thread Frocess Thread

\ __/ \ —/
\

\

= | (Y01 m

1:3;’;:;! (_:'I / Karma! ‘ E Karnel fE %
- X
< 7

/ I
Ruri-tirne Thread Frocess Process Thread
system table table table table

Figure 2-13. (a} A user-level threads package. (b A threads package managad
bv the kermnel.

again automatically. 1t the machine has an instruction to store all the registecs and
another one to load them all, the entire thread switch can be done in a handful of
instrucuons. Doing thread switching like this is al least an order of magnitude
faster than trapping (o the kernel and is a strong argument in favor of user-level
threads packages.

However, there 15 one key difference with processes. When a thread is fin-
ished running for the moment, for example, when it calls thread _vield, the code
of thread _vield can save the thread’s information in the thread table iself. Furth-
ermore, it can then call the thread scheduler to pick another thread to run. The
procedure that saves the thread's state and the scheduler are just local procedures,
so invoking them is much more efticient than making a kernel call. Among other
issUes, no trap is needed, no context switch is needed, the memory cache need not
be flushed, and so on. This makes thread scheduling very fast.

User-level threads also have other advantages. They allow each process to
have its own customized scheduling algorithm. For some applications, for exam-
ple. those with a garbage collector thread. not having to worry about a thread
being stopped at an inconvenient moment is a plus. They also scale betier, since
kernel threads invariably require some table space and stack space in the kernel.
which can be a problem if there are a very large number of threads.

Despite their bettcr performance. user-level threads packages have some
major problems. First among these is the problem of how blocking system calls
are implemented. Suppose that a thread reads from the keyboard before any keys
have been hit. Leiting the thread actually make the system call is unacceptable,
since this will stop all the threads. One ot the main goals of having threads in the
first place was to allow each one to use blocking calls, but to prevent one hlocked
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thread from affecting the others. With blocking system calls, it is hard to see how
this goal can be achieved readily. o

The system calls could all be changed 10 be nonblocking {c.g., a read on the
keyboard would just return 0 byles if no characters were already bufﬂ:rcd},‘ but
rec']uiring changes to the operating system is unattractive. Besides, one 0_1' Fhe
arguments for user-level threads was precisely (hat they could run th.h e’_t':.‘.‘nf:.q
operating systems. In addition, changing the semanties of read will reguire
changes 10 many user programs.

Ancther alternative is possible in the event that it is possible 1o telf in advance
it a call will block. Tn some versions of UNIX, a svstem call, select, exists. which
allows the caller to tell whether a prospective read will block. When this call is
present. the library procedurc read can be replaced with a new one that first does
a select call and then only does the read call if it is safe (i.e.. will not block). I{
the read call will block. the call is not made. Instead. another thread is tun. The
next time the run-time system gets control, it can check again 10 see it the read is
now safe. This approach requires rewriting parts of the system call library, is
inefficient and inelegant, but there is little choice. The code placed around the
system call to do the checking is called a jacket or wrapper.

Somewhat analogous (o the problem of blocking system calls is the problem
of page faults. We will study these in Chap. 4. For the moment, it is sutficient to
say that computers can be set up in such a way that not all of the program is in
main memory at once. If the program calls Or Jumps to an struction that is not in
memory. a page fault occurs and the operating system will 2o and get the missing
instruction (and its neighbors) from disk. This is called a page favlt. The process
is blocked while the necessary instruction is being located and read in. If a thread
causes a page fault, the kernel, not even knowing about the existence of threads.
naturally blocks the entire process until the disk /O iy complete, even though
other threads might be runnable,

Another problem with user-level thread packages s that if a thread starts run-
ning, no other thread in that process will ever run unless the first thread volun-
tarily gives up the CPU. Within a single process, there are no clock ITHerrupts,
making it impaossible to schedule processes round-robin fashion (taking turny).
Unless a thread enters the run-time system of its own free will, the scheduler will
never get & chance.

One possible solution to the problem of threads running forever is 1o have he
run-ime system request a clock signal (interrupt) once a second to give it control,
but this, o, is crude and messy to program. Periodic clock interrupts at a higher
frequency arc not always possible, and even if they are. the total overhead may be
substantial. Furthermore, a thread might also need a clock interrupt, intertering
with the run-time system™s use of the clock.

Another, and probabiy the most devastating argument against user-level
threads, is that programmers generally wanl threads precisely in applications
where the threads block often, as, for example, in a muluathreaded Web server,
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These threads are constantly making system calls. Once a trap has occurred 10 the
kernel to carry out the system call, 10 1s hardly any more work {or the I-Serptf:l to
switch threads if the old one has blocked, and having the kernel do this eliminales
the need tor constantiy making sefect system calls that check to see if read system
calls are sate. For applications that are essentially entirely CPU bound and rarety
block, what 1s the point of having threads at ali? No one would seriously propose
computing the [irst # prime numbers or playing chess using threads becuuse there
15 nothing to be gained by doing 1t thal way.

2.2.4 Implementing Threads in the Kernel

Now let us consider having the kernel know about and manage the threads.
No run-fime system is necded in each. as shown in Fig. 2-13(b). Alseo, there is no
thread table in each process. Instead. the kernel has a thread table that keeps track
of ail the threads in the system. When a thread wants (o cresate a new thread or
destroy an existing thread. it makes a kernel call, which then does the creation or
destruction by updating the kernel thread rable.

The kernel's thread table holds each thread’s registers, state, and other infor-
mation. The information is the same as with user-level threads, but it is now in
the kernel instead of in user space (inside the run-time system). This information
Is a subset of the information that traditional kernels maintain about each of their
single-threaded processes, that is, the process state, In addition, the kernel also
maintains the traditional process table (o keep track of processes.

All calls that might block a thread arc implemented as system calls, at consid-
erably greater cost than a call to a run-time system procedure. When a thread
blocks, the kernel, at its opiion, can run either another thread from the same proc-
ess (if one is ready), or a thread from a different process. With user-level threads,
the run-time system keeps running threads from its own process until the kemnel
takes the CPU away from it (or there are no ready threads left to run).

Due to the relatively greater cost of creating and destroying threads in the ker-
nel, some systems take an environmentally correct approach and recycle their
threads. When z thread is destroyed, it is marked as not runnable, but its kernel
data structures are not otherwise affected. Later. when a new thread must be
created, an old thread s reactivared, saving some overhead. Threuad recycling is
also possible for user-level threads, but since the thread management overhead is
much smaller, there is less incentive to do this,

Kernel threads do not require any new, nonblocking system calls. In addition.
1f one thread in a process causes a page fault, the kernel can easily check to see if
the process has any other runnable threads, and if 50, run one of them while wait-
ing for the required page to be brought in from the disk. Their main disadvantage
1s that the cost of & system call is substantial, so if thread operations {creation, ter-
mination, ¢tc.} are common, much more overhead will be incurred,
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2.2.5 Hybrid Implementations

Various ways have been investigated to (ry (o combine the advantages of
user-levet threads with kernel-fevel threads. One way i1s use kernel-level threads
and then multiplex user-level threads onto some or all of the kernel threads, as
shown in Fig. 2-14.

Multiple user threads
an a kernel thread

\ ] ﬁ

User
, space

Kernet
Kernel “— Hemelthread ] | space

Figure 2-14. Muitiplexing user-level threads onto kernel-lovel threads.

In this design, the kernel is aware of only the kernel-level threads and
schedules those. Some of those threads may have multiple user-level threads mul-
tiplexed on top of them. These user-level threads are created, destroved, and
scheduled just like uscr-level threads in a process that runs on an operating system
without multithreading capability. In this model, cach kerncl-level thread has
some set of user-level threads that take turns using it

2.2.6 Scheduler Activations

Various researchers have attempted to combine the advantage of user threads
(good performance) with the advantage of kernel threads (not having to use a lot
of tricks to make things work). Below we will describe one such approach dev-
ised by Anderson et al. (1992), called scheduler activations. Related work is dis.
cussed by Edler et al. (1988) and Scott et 4l. ( 199¢)),

The goals of the scheduler activation work are to mimic the functionality of
kernel threads. but with the better performance and greater flexibility vsually
associated with threads packages implemented in user space. In particular. uscr
threads should not have 10 make special nonblocking system calts or check in
advance if it is safe to make certain system culls. Nevertheless, when a thread
blocks on a system call or on a page fault, it should be possible to run other
threads within the same process, if any are ready.
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Efficiency is achieved by avoiding unnecessary (ransitions between user ﬂf‘td
kernet space. If a thread blocks waiting for another thread to do mmethtng._ for
example, there is no rcason to involve the kernel. thus saving the overhead of trhe
kernel-user transition. The user-space run-time system can block the synchroniz-
ing thread and schedule a new one by itself. 1

When scheduler activations are used. the kernel assigns a certain number of
virtuul processors to each process and iets the (user-space) run-time system allo-
cate threads to processors. This mechanism can also be used on a multiprocessor
where Lhe virtual processors may be real CPUs. The number of virtual processors
allocated to a process is initially one, but the process can ask for more and can
also return pracessors it no longer needs. The kernel can also take hack virtual
processors already allocated in order to assign them to other, more needy.
processes.

The basic idea that miakes this scheme work is that when the kernel knows
that o thread has blocked (e.g.. by its having executed a hblocking system call or
caused u page fauly), the kernel notifies the process” run-time system. passing as
parameters on the stack the number of the thread in question and a description of
the event thut occurred. The notification happens by having the Kemel activate
the run-time system at a known starting address. rotighly analogous to a signal in
UNIX. This mechanism is called an upeall.

Once activated like this, the run-time system can reschedule its threads, Typi-
cally by marking the current thread as blocked and tiking another thread {rom the
ready list, setting up its registers. and restarting it. Later, when the kernel learns
that the original thread can run again (e.g.. (he pipe it was trying to read from now
contains data, or the page it faulted over has been brought n from disk), it makes
another upeall to the run-time system to tnform it of this event. The run-time SYS-
tem. a1 its own discretion, can either restart the blocked thread immedialelv, or put
it on the ready list to be run later.

When a hardware interrupt occurs while o user thread is runing, the inter-
rupted CPU switches inte kernel mode. 11 the interrupt is caused by an event not
of interest w the interrupted process, such s vampletion of another process’ /0.
when the interrupt handler has finished, it puts the imerrupted thread back in the
state 1t was in before the interrupt. [f. however. the process ts nterested in the
mierrupt, such as the arrival of 4 page needed oy one of the process™ threads, the
imerrupted thread is not restarted. Instead. the mterrupted thread is suspended
and the run-time system starled on that virtual CPU. with the state of the inter-
rupted thread on the slack. 1t is then up to the ran-time svstem to decide which
thread to schedule on that CPU: the interrupted one. the newly ready one. or some
third choice.

An objection to scheduier activations is the fundamental reliance on upcalls, a
concept that violates the structure inherent in any layered system. Normuaily, tuyer
n otfers certain services that layer s + 1 can call on. bug layer # may not call pro-
cedures in layer #n + 1. Upcalls do not follow this fundamental principle,
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2.2.7 Pop-Up Threads

Threads are frequently useful in distoibuted systems. An important example is
how Incoming messages, for example requests for service, are handled. The tradi-
tional approach is to have a process or thread that is blocked on a receive system
call waiting for an incoming message. When a message arrives, it accepts the
message and processes it.

However. a completely different approach is also possible, in which the
arrival of a message causes Lhe system to create a new thread to handle the mes-
sagc. Such a thread is called a pop-up thread and is illustrated in Fig. 2-15. A
key advantage of pop-up threads is that since they are brand new, they do not have
any history—registers, stack. etc. that must be restored. Each one starts out fresh
and each one is identical to all the others. This makes it possible (o create such a
thread quickly. The new thread is given the incoming message Lo process, The
result of using pop-up threads is that the latency between message arrival and the
start of processing can be made very short.

Pap-ug thraad
Frocess created to handle

NComing message
\ Existing thread J 9

- ]
X

Incarming message J

MNetwork
{z) (b

Figure 2-15. Creation of a new thread when o miessage arrives. ¢4 Before the
message arrives. (b After the message arrives.

Some advance planning is needed when pop-up threads are used. For exam-
ple. in which process does the thread run? If the system supports threads running
m the kernel’s context, the thread may run there (which is why we have not shown
the kernel n Fig. 2-15). Having the pop-up thread run in kernel space is usually
easicr and faster than putling it in user space. Also, a pop-up thread in kernel
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space can easily access all the kernet’s tables and the 1/0 devices. which may be
needed for interrupt processing. On the other hand, a buggy kemel thread can do
more damage than a buggy user thread. For example. it it runs too long and there.
is no way to preempt it, incoming data may be lost.

2.2.8 Making Single-Threaded Code Multithreaded

Many existing programs were written for single-threaded processes. Convert-
mg these to muitithreading is much trickier than it may ai first appear. Below we
will examine just a few of the pitfalls.

As a start, the code of a thread normally consists of multiple procedures, just
like a process. These may have local variables, global variables, and procedure
parameters.  Local variables and parameters do not cause any trouble. but vari-
ables that are global to a thread but not global to the entire pragram do. These are
variables that are global in the sense that many procedures within the thread use
them (as they might use any global variable), but other threads should logically
leave them alone.

As an example, consider the errno variable maintained by UNIX. When a
process {or a thread) makes a systern call that fails, the error code is put into
errno, In Fig. 2-16, thread | executes the system call access to find out if it has
permission to access a certain fite. The operating system returns the answer in the
global variable errno. After control has returned to thread 1, but before it has a
chance to read errno, the scheduler decides that thread | has had enough CPU
time for the moment and decides to switch to thread 2. Thread 2 executes an
open call that fails, which causes errno to be overwritten and thread 1°s access
code to be lost forever. When thread | starts up later, it will read the wrong value
and behave incorrectly.

Thread 1 Thread 2

é

Access (ermo set)

¢

— Timg

Open {errmo avenaritten)
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Figure 2-16. Conflicts between threads over the use of a global varahle.
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Vartous solutions to this problem are possible. One is to prohibit global v;ru'i—
ables altogether. However worthy this ideal may be, it conflicts with muich exist-
ing software. Another is to assign cach thread its own private global variables, as
shown in Fig. 2-17. In this way, each thrcad has its own private copy of errmeo and
other global variables. so conflicts are avoided. In effect, this decision creates a
new scoping level, variables visible to ail the procedures of a thread, in addition to
the existing scoping levels of variables visible only to one procedure and variables
visible everywhere in the program,

Thread 1's
code

Thraad 2's
code

Thread 1's
stack haa

Thraad ¥'s
L~ stack

Thread {'s
globals

Thread 2'¢
globals

Figure 2-17. Threads can have privale global variables,

Accessing the private global variables is 2 bit tricky, however, since most pro-
gramming languages have a way of cxpressing local variables and global vari-
ables, but not intermediate forms. It is possible to allocate a chunk of memory for
the globais and pass it to each procedure in the thread. as an extra parameler.
While hardly an elegant solution. it works.

Alternatively, new library procedures can be inroduced to create. set. and
read these thread-wide global variables. The tirst call might look like this:

create _global("bufptr'};

It allocates storage for a pointer called bufptr on the heap or in a special storage
area reserved for the calling thread. No matter where the storage is allocated.
only the calling thread has access 10 the global variable. If another thread creates
a global variable with the same name. i gels a different storage location that does
notf contlict with the existing one.

Two calls are needed to access global variables: one for writing them and the
other for reading them, For writing. sointething like

set_global("bufptr”, &buf);
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will do. It stores the value of a pointer in the storage Iocation pr!:avinusly creared
by the call to create _global. To read a global vanable, the call might look like

bufptr = read_ global{"bufptr");

It returns the address stored in the global variabie. so its data can be accessed.

The next problem turning a single-threaded program into a multithreaded pro-
gram is that many library procedures are not reentrant. That is, they were not
designed to have a second call made to any given procedure while a previous call
has not yet finished. For example, sending a message over the network may well
be programmed to assemble the message in a fixed buffer within the library, then
to trap to the kernel to send it. What happens if one thread has assembled its mes-
sage 1n the buffer, then a clock interrupt forces a switch to a second thread that
tmmediately overwrites the buffer with its own message?

Similarly, memory allocation procedures. such as malfoc in UNIX, maintain
crucial tables about memory usage. for example, a linked list of available chunks
of memory. While mafioc is busy updating these lists, they may temporarily be in
an nconsistent state, with pointers that point nowhere. If a thread switch ocours
while the tables are inconsistent and a new call comes in from a different thread,
an invalid pointer may be used, leading o a program crash. Fixing all these prob-
lesns, properly effectively means rewriting the entire library.

A different solution is 10 provide each procedure with a jacket that sets a bit 1o
mark the hbrary as in use. Any avempt lor another thread to use a ltbrary pro-
cedure while a previous call has not yet completed is blocked. Although thix
approach can be made to work. it greatly eliminates potential parallelism.

Next, consider signals. Some signals are logically thread specific, whereas
athers are not. For example. if a thread calls alarm_ it makes sense for the result-
ing signal to go to the thread that made the call, However, when threads are
implemented entirely in user space, the kernel does not even know about threads
and can hardly direct the signal to the right one, An additional complication
occurs if a process may onity have one alarm at a time pending and several threads
call alarm independently.

Other signals, such as keyboard interrupt. are not thread specitic. Who should
catch them? One designated thread? All the threads? A newly crealed pop-up
thread? Furthermore, what happens if one thread changes the signal handlers
without telling other threads? And what happens if one thread wants to catch 3
particular signal (say, the user hitting CTRL-C), and another thread wants this sig-
nal to terminate the process? This situation can arise if one or more threads run
standard library procedures and others are user-written. Clearly, these wishes are
ncompatible. In general. signals are difficult enough to manage in a single-
hreaded environment. Going to a multithreaded environment does not make
them any easier to handle.

One last problem introduced by threads is stack management. In many sys-
tems. when a process’ stack overfiows, the kemel just provides that process with
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more stack automatically. When a process has multipie threads, it must alsa have
multiple stacks. If the kemel is not aware of all these stacks, it cannot grow them
automatically upon stack fauit. In fact, it may not even realize that 2 memory
fault is related 10 stack growth.

These problems are certainly not insurmouatable, but they do show that just
imtroducing threads into an cxisting system without a fairly substantial system
redesign is not going to work at all. The semantics of system calls may have to be
redefined and libraries have to be rewritten, at the very least. And all of these
things must be done in such a4 way as to remain backward compatible with exist-
ing programs for the limiting case of a process with only one thread. For addi-
tional information about threads, see (Hauser et al., 1993; and Marsh et al., 1991).

2.3 INTERPROCESS COMMUNICATION

Processes frequently need to communicate with other processes. For exam-
ple, in a shell pipeline, the output of the first process must be passed to the second
process. and so on down the line, Thus there is a need for communication
between processes, preferably in a well-structured way not using interrupts.  In
the following sections we will look at some of the issues related to this InterPro-
cess Communication or IPC.

Very briefly, there are three issues here. The first was alluded to above: how
one process can pass information to another. The second has to do with making
sure two or more processes do not get into cach other’s way when engaging in
critical activities (suppose two processes each try to grab the last 1 MB of
memory). The third concerns proper sequencing when dependencies are present:
if process A produces data and process B prints them, B hus 0 wail until A4 has
produced some data before starting to print. We will examine all three of these
issues starting in the next section.

It is also important to mention that 1wo of these issues apply equally well o
threads. The first one—passing information—is easy for threads since they share
a common address space (threads in different address spaces that need 1o com-
municate fall under the heading of communicating processes). However. the
other two—Kkeeping out of each other’s hair and proper  sequencing—apply
equally well to threads. The same problems exist and the same solutions apply.
Below we will discuss the problem in the context of processes, but please keep in
mind that the same problems and solutions also apply to threads.

2.3.1 Race Conditions

In some operating systems, processes that are working together may share
some commmon storage thal each one can read and write. The shared storage may
be 1n main memory (possibly in a kemnel data structure) or it may be a shared fife;
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the locatien of the shared memory does not change the nature of the communica-
tion or the probtems that arise. To see how interprocess communication works
practice, let us consider a stmple but common example: g print spooler. When a
process wants to print a tile, it enters the file name in a special spooler directory.
Another process. the printer daemon. periodically checks to see if there are any
files 1o be printed, and if there are, it prints them and then removes their names
from the directory.

Imagine that our spooler directory has a very large number of slots, numbered
0. 1, 2, ..., each one capable of hoiding a file name. Also imagine that there are
lwo shared variables, out, which points to the next file to be printed, and in, which
points to the next frec slot in the directory. These two variables might well be
kept on a two-word file available to all processes. At a certain instant, slots O o 3
are empty (the files have already been printed) and slots 4 to 6 are full {with the
names of files queued for printing). More or less simultaneously, processes A and

8 decide they want to queue a fite for printing. This situation is shown in Fig. 2-
i8.

Spocler

directory
4 abc out = 4
6 prog.n
7 in=7

Figure 2-18. Two processes wanl (o access shared memory at the same lime,

In jurisdictions where Murphy’s lawt is applicable, the following might hap-
pen. Process A reads in and stores the value. 7. in a local variable called
next_free _slor. Just then a clock inerrupt occurs and the CPU decides that Proc-
ess A has run long enough, so it switches to process B. Process B also reads in,
and also gets a 7. [t too stores it in irs local vartable next_free _slot. At this
instant both processes think that the next availabie slot is 7.

Process B now continues to run. It stores the name of its file in slot 7 and
updates in to be an 8. Then it goes off und does other things.

Eveniually, process A runs again, starting from the place it left off. Tt looks at
next_free_slot, finds a 7 there, and writes its file name in slot 7, erasing the name

T If womething can go wrong. it will,
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that process £ just put there. Then it computes next _free _sfor + |, which 15 8,
and sets in to 8. The spooler directory is now internally consistent, so the printer
daemon will not notice anything wrong, but process 8 will never receive any out-
put. User 8 will hang around the printer room for years, wistfelly hoping for out-
put that never comes. Siiuations like this, where two or more processes are read-
ing or writing some shared data and the final result depends on who runs precisely
when, are culled race conditions. Debugging programs containing race condi-
tions is no fun at all. The results of most test runs are fine., but once in a rarc
while something weird and unexplained happens.

2.3.2 Critical Regions

How do we avoid race conditions? The key to preventing trouble here and in
many other situations involving shared memory, shared files. and shared every-
thing else is to find some way to prohibit more than one process from reading and
writing the shared data at the same time, Put in other words, what we need is
mutual exclusion, that is, some way of making sure that if one process is using u
shared variable or file, the other processes will be excluded from doing the same
thing. The difficulty above occurred because process B started using one of the
shared variables before process A was finished with it. The choice of appropriate
primitive operations for achieving mutual exclusion is a major design issue in any
operating system, and a subject that we will examine in great detail in the follow-
Ing sections,

The problem of avoiding race conditions can also be formulated in an abstract
way. Part of the time, a process is busy doing internal computations and other
things that do not lead to race conditions. However, sometimes a process have to
access shared memory or files, or doing other critical things that can lead to races.
That part of the program where the shared memory 1y accessed is called the criti-
cal region or critical section. If we could arrange matters such that no tweo proc-
esses were ever In their critical regions at the same time, we could avoid races.

Although this requirement avoids race conditions, this is not sufficient for
having parallel processes cooperate correctly and efficiently using shared data.
We need four conditions to hold to have a good solution:

No two processes may be simuitaneously inside their critical regions.
2. No assumptions may be made about speeds or the number of CPUs.
3. No process running outside its critical region may block other processes.
4. No process should have to wait forever to enter its critical region,

In an abstract sense, the behavior that we want is shown in Fig. 2-19. Here

process A enters its critical region at time T,. A little later, ar time 75 process B
attempts to enter its critical region but fails because another process is already in
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its critical region and we allow only one at & time. Conse_quently. B, is temporarily
suspended until time T4 when A leaves its critical region, alll::u'q.ww?njbT B to enter
immediately. Eventually B leaves (at T4) and we are back to the original situation
with no processes in their critical regions.

A enters critical region

/ /

A teaves critical region

Process A | 1 |
| | | I
I I 1 I
I I B attempts to i B enters ) B Iaaves_t
enter critical \ critical region ‘ critical region
: : region
: I | t
r i/
Prnmss B ] 1..-1:_..................-...,--.-.....:I‘:.
| | e I I
! ' B blocked 1 '
T, T, T T,

Time ————ip=

Figure 2-19. Mutual exclusion using critical regions.

2.3.3 Mutual Exclusion with Busy Waiting

In this section we will examine various proposals for achieving mutual! exclu-
sion, so that while one process is busy updating shared memory in its critical
region, no other process will enter /s critical region and cause trouble.

Disabling Interrupts

The simplest solution is to have each process disable all interrupts just after
entering its critical region and re-enable them Just before leaving it. With inter-
rupts disabled, no clock interrupts can occur. The CPU iy only switched from
process to process as a result of clock or other interrupts, after all, and with inter-
rupts turned off the CPU will not be switched to another process. Thus, once a
process has disabled interrupts, it can examine and update the shared memory
without fear that any other process will intervene,

This approach is generally unattractive because it is unwise to give user
processes the power to turn off interrupts. Suppose that one of them did it, and
never turned them on again? That could be the end of the system. Furthermore, if
the system is a multiprocessor, with two or more CPUs, disabling interrupts
affects only the CPU that executed the disable instruction, The other ones will
continue running and can access the shared memary.
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On the other hand, it is frequently convenient for the kernel iwself to disable
interrupts for a few instructions while it is updating vartables or lists. 1 If an I'mter-
rupt occurred while the list of ready processes, for example, was in an inconsistent
state, race conditions could occur. The conchlusion is: disabling interrupts is often
a useful technique within the operating system itself but is not appropriate as a
general mutual exclusion mechanism for user processes.

Lock Variables

As a second attempt, let us look for a software solution. Consider having a
single, shared (lock) variable, initially 0. When a process wants to enter its criti-
cal region, it first tests the lock. If the lock is O, the process sets it to ! and enters
the critical region. If the lock is already 1, the process just waits until it becomes
0. Thus, a2 0 means that no process is in its critical region, and a 1 means that
Some process is in its critical region.

Unfortunately, this idea contains exactly the same fatal flaw that we saw in
the spooler directory. Suppose that one process reads the lock and sees that it is 0.
Before it can set the lock to 1, another process is scheduled., runs, and sets the lock
to 1. When the first process tuns again, it will also set the lock to 1, and two
processes will be in their critical regions at the same time.

Now you might think that we could get around this problem by first reading
out the lock value, then checking it again just before storing into it, but that really
does not help. The race now occurs if the second process modifies the lock just
after the first process has tinished its second check.

Strict Alternation

A third approach to the mutual cxclusion problem is shown in Fig. 2-20. This
program fragment, like nearly all the others in this book, is written in C. C was
chosen here because real operating systems are virtually always written in C (or
occasionally C++), but hardly ever in languages like Java, Modula 3, or Pascal. C
ts powerful, efficient, and predictable, characteristics critical for writing operating
systems. Java, for example, is not predictable because it might run out of storage
at a critical moment and need to invoke the garbage collector at a most inoppor-
tune time. This cannot happen in C because there is no garbage collection in C.
A quantitative comparison of C, C++, Java, and four other languages is given in
(Prechelt, 2000).

In Fig. 2-20, the integer variable furn, initiatly 0, keeps track of whose turn it
i3 to enter the critical region and examine or update the shared memory. Initially.
process O inspecis turn, finds it to be 0, and enters its critical region. Process |
also finds it to be 0 and therefore sits in a tight ioop continually testing furn to see
when it becomes 1. Continuously testing a variable until some value appears is
called busy waiting. It should usually be avoided, since it wastes CPU time.
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while (TRUE) { while (TRUE) {
while {turn 1= Q) /= loop */ ; while (turn != 1) /* loop */ ;
critical _region( ); critical _region( );
turn = 1; turn = 0Q;
noncritical _region( ); noncritical_regiory };
} }
(a} {b)

Figure 2-20. A proposed solution to the cntical region preblem. (a) Process ().
{b) Process 1. In bath cases, be sure to nidte the semicolons terminating the while
statements.
Only when there is a reasonable expectation that the wait will be short 15 busy
waiting used. A lock that uses busy waiting is called a spin lock.

When process () leaves the critical region, it sets rurn to 1, to allow process |
lo enter its critical region. Suppose that process ! finishes its critical region
quickly, so both processes are in thetr noncritical regions, with furm set 10 0. Now
process O executes its whole loop quickly, exiting its critical region and setting
turr to 1. At this point tern is 1 and both processes are executing in their noncriti-
cal regions.

Suddenly. process O finishes its noncritical region and goes back to the top of
its loop. Unfortunately, it is not permitted to enter its critical region now, because
turn is 1 and process 1 i1s busy with its noncritical region. Tt hangs in its white
loop until process 1 sets fum to 0. Put differently, taking turns is not a good idea
when one of the processes is much slower than the other.

This situation violates condition 3 set out above: process 0 is being blocked by
a process not in is crittcal region. Going back to the spooler directory discussed
above, if we now associate the critical region with reading and writing the spooler
directory, process O would not be allowed to print another file because process |
was doing something else,

In fact, this solution requires that the two processes strictly allernate in enter-
ing their critical regions, for example. in spooling files. Neither one would be
permitted to spooi two in a row. While this algorithm does avoid all races. it is
not really a serious candidate as a solution because it violates condition 3.

Peterson’s Solution

By combining the idea of taking turns with the idea of lock variabies and
warning variables, a Dutch mathematician, T. Dekker, was the first one to devise
a software solution to the mutual exclusion problem that does not require strict
alternation. For a discussion of Dekker's algorithm, see (Dijkstra, 1965).

In 1981, G.L. Peterson discovered a much simpler way 1o achieve mutval
exclusion, thus rendering Dekker's solution obsolete. Peterson's algorithm is
shown in Fig. 2-21. This algorithm consists of two procedures written in ANSI C,
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which means that function prototypes should be supplied for all the fun_cti{}r!s;
defined and used. However, to save space, we will not show the prototypes in this
or subsequent exampies.

#define FALSE O
#define TRUE 1

#define N 2 > number of processes */
int turn; f+ whose turn is it? +/
int interested]N]; /* all values initialfy O (FALSE) »/
void enter_region(int process); f* process is 0 or 1 #/
{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE;  /+ show that you are interested */
turn = process; {* set flag */
while (lurn == process && interested{other] == TRUE) /+ nuli statement */ :
}
void leave _region(int process) /* process: who is leaving */
{
interestedfprocess] = FALSE;  /+ indicate depanure from critical region »/
}

Figure 2.21. Peterson’s solution for achieving muival exclusion.

Before using the shared variables {i.e., before entering its critical region),
each process calls emter _region with its own process number, 0 or 1, as parame-
ter. This call will cause it to wait, if need be, until it is safe to enter. After it has
finished with the shared variables, the pracess calls leave | region to indicate that
it is done and to allow the other process to enter. if it so desires.

Let us see how this solution works. Initially netther process is in its critical
region. Now process 0 calls enter _region. 1t indicates its interest by setting its
array element and sets furn 10 0. Since process | is not interested, enter_region
returns immediately. If process | now calls erter_region, it will hang there until
interested [0] goes to FALSE, an event that only happens when process 0 calls
leave _region to exit the critical region,

Now consider the case that both processes call enter_region almost simul-
taneously. Both will store their process number in turn. Whichever store is done
last is the one that counts; the first one is overwritten and lost. Suppose that proc-
ess | stores last, so furm is 1. When both processes come to the whie statement,
process ) executes it zero times and enters its critical region. Process | loops and
does not enter its critical region until process ( exits its critical region.
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The TSL Instruction

Now let us look at a proposal that requires a little help from the hardware.
Many computers, especially those designed with multiple processors in mind,
have an instruction

TSL BRX,LOCK

(Test and Set Lock) that works as follows. It reads the contents of the memory
word lock into register RX and then stores a nonzero value at the memory address
lock. The operations of reading the word and storing into it are guaranteed to be
indivisible—no other processor can access the memory word until the instruction
ts finished. The CPU executing the TSL instruction locks the memory bus to
prehibit other CPUs trom accessing memory until it is done.

To use the TSL instruction, we will use a shared variable. fock, 1o coordinate
access (o shared memory. When fock is 0, any process may sel il to | using the
TSL instruction and then read or write the shared memory. When it is donc, the
process sets fock back to 0 using an ordinary move instruction.

How can this instruction be used to prevent two processes from simultane-
ously entering their critical regions? The solution is given in Fig. 2-22. There a
four-tnstruction subroutine in a fictitious (but typical} assembly language is
shown. The first instruction copies the old value of fock 1o the register and then
sets fock to 1. Then the old value is compared with Q. If it is nonzero, the fock
was already set, so the program just goes back to the beginning and tests it again.
Sooner or later it will become 0 (when the process currently in its critical region is
done with its critical region), and the subroutine returns, with the ock set. Clear-
ing the tock is simple. The program just stores a O in fock. No special instruc-
tions are needed.

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | retum to caller; critical region entered

leave _region:
MOVE LOCK, #0 | store a O in lock
RET | return to caller

Figure 2-22. Entering and leaving u critical region using the TSL instruction.
One solmion to the critical region problem is now straightforward. Before

enering its critical region, a process calls enter_region, which does busy waiting
until the lock is free; then it acquires the lock and returns. After the critical region



108 PROCESSES AND THREADS CHAP. 2

the process calls feave _region, which stores a O in feck. As with all Hnluti{?nx
based on critical regions, the processes must call enzer_region and leave _region
at the correct times for the method to work. It a process cheats, the mutual exclu-
sion will fail.

2.3.4 Sleep and Wakeup

Both Peterson’s solution and the solation using TSL are correct, but both have
the defect of requiring busy waiting. In essence. what these solutions do is this:
when a process wants to enter its critical region. it checks to see if the enfry is
allowed. If it is not, the process just sits in a tight loop waiting until it is.

Not only does this approach waste CPU time, but it can also have unexpected
effects. Consider a computer with two processes, H. with high priority and 1.
with low priority. The scheduling rules are such that A is run whenever it 15 1n
ready state. At a certain moment, with £ in its critical region. H becomes ready to
run (e.g.. an /O operation completes). H now begins busy waiting, but since L is
never scheduled while H is running, £ never gets the chance to leave its critical
region, so H loops forever. This situation is sometimes referred to as the priority
inversion problem.

Now let us look at some interprocess communication primitives that block
instead of wasting CPU time when they are not allowed to enter their critical
regions. One of the simplest is the pair sleep and wakeup. Sleep is a system call
that causes the caller to block, that is, be suspended unti] another process wakes it
up. The wakeup call has one parameter, the process to be awakened. Alterna-
tively, both sleep and wakeup each have one parameter. 3 memory address used
to match up sleeps with wakeups.

The Producer-Consumer Problem

As an example of how these primitives can be used. let us consider the
producer-consumer problem (alse known as the bounded-buffer problem;.
Two processes share a common, fixed-size buffer. One of them. the producer.
puts information into the buffer, and the other one. the consumer, takes it out. (It
is also possible to generalize the problem to have m producers and n consumers,
but we will only consider the case of one producer and one consumer because this
assumption simplifies the solutions). ‘

Trouble arises when the producer wants to put a new item in the buffer, but it
15 already tull. The solution is for the producer to go to sleep. to be awakened
when the consumer has removed one or more items. Similacly, it the consumer
wants 1o remove an item from the buffer and sees that the buffer is empty. 1t goes
to sleep untit the producer puts something in the buffer and wakes it up.

This approach sounds simple enough, burt it leads to the same kinds of race
conditions we saw earlier with the spooler directory. To keep track of the number
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of items in the buffer. we will need a variable, cousr. If the maximum number of
items the buffer can hold is N, the producer’s code will first test o see it count 1s
N. If it is, the producer will go to sleep; if it is not. the producer will add an uem
and increment count.

The consumer’s code is similar: first test counr to sec if 1t 15 (. 11 15, go t©
s]aep\ if it is nonzero, remove an item and decrement the counter. Each of the
processes also 1ests o see if the other should be awukened, and if so, wakes it up.
The code for both producer and consumer is shown in Fig. 2-23.

#define N 100
int count = Q;

void producer{void)

/* number of slots in the buffar */
f* number of iterns in the buffer =/

f* repeat forever «/

/* generate naxt item =/

/= if buffer is full, go to sleep */

/* put item in bufter +/

/* increment count of items in buffer */
/* was buffer empty? «/

/* repeat forever */

/= if buffer is empty, got to sleep */

/* take item out of buffer »/

/* decrement count of iterns in buffer +/

if {count == N - 1} wakeup(producer); /* was buffer full? =/

{
int itern;
while (TRUE) {
item = produce_item{);
if {count == N) sleep{ );
insert _item(item);
count = count + 1;
if {count == 1) wakeup{consumer);
}
}
void consurner{void)
{
int itern;
white (TRUE) {
if {count == 0) sleep();
item = remove _item( );
count = count - 1;
consume _item(item);
} _
}

f* pring item »/

Figure 2-23. The producer-consumer problem with 2 fatal race condition.

To express system calls such as sleep and wakeup in C, we will show them as
calls to library routines. They are not part of the standard C library but presum-
ably would be available on any system that actuaily had these system calls. The
prucn?dures insert_item and remove _item, which are not shown, handle the book-
keeping of putting items into the buffer and taking items out of the buffer.
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Now let us get back to the race conditton. [t can occur because access {o
count 1s unconstrained. The following situation could possibly occur. The buffer
is empty and the consumer has just read cournt to see if it 1s €. At that instzfnt, the
scheduler decides to stop running the consumer temporarily and start running the
producer. The producer inserts an item in the buffer, increments count, and
notices that # is now 1. Reasoning that count was just 0, and thus the consumer
must be sleeping, the producer calls wakeup 10 wake the consumer up.

Unfortunately, the consumer is not yet logically asleep. so the wakeup signal
is lost. When the consumer next runs, it will test the value of comnt it previously
read, find it to be 0, and go 10 sleep. Sooner or later the producer will fill up the
buffer and also go to sleep. Both will sleep forever.

The essence of the problem here is that a wakeup sent to a process that is not
(yet) sleeping is lost. If it were not lost, everything would work. A quick fix is to
modify the rules to add a wakeup waiting bit to the picture. When a wakeup is
SENt 10 a process that is still awake, this bit is set. Later. when the process tries to
g0 to sleep, 1f the wakeup waiting bit is on, it will be turned off. but the process
will stay awake. The wakeup waiting bit is a piggy bank for wakeup signals.

While the wakeup waiting bit saves the day in this simple example, it is easy
to construct examples with three or more processes in which one wakeup waiting
bit is insufficient. We could make another patch and add a second wakeup wait-
ing bit. or maybe 8 or 32 of them, but in principle the problem is still there.

2.3.5 Semaphores

This was the situation in 1965, when E. W, Dijkstra {1963) suggested using an
integer variable to count the number of wakeups saved for future use. In his pro-
posal, a new variable type, called a semaphore, was introduced. A semaphore
could have the value 0, indicating that no wakeups were saved, or some positive
value if one or more wakeups were pending.

Dijkstra proposed having two operations, down and up (generalizations of
sleep and wakeup, respectively). The down operation on a semaphore checks to
see if the value is greater than 0. If so. it decrements the vajue (1.e,, uses up one
stored wakeup) and just continues. If the value is 0. the process is put to sleep
without completing the down for the moment. Checking the value. changing i,
and possibly going to sleep. is ait done as a single, indivisible atomic action. It is
guaranteed that once a semaphore operation has started, no other process can
access the semaphore until the operation has completed or blocked. This atomi-
city is absolutely essential to solving synchronization problems and avoidin £ race
conditions.

The up operation increments the value of the semaphore addressed. If one or
MOre processes were sieeping on that semaphore, unable to complete an earlier
down operation, one of them is chosen by the system (e.g., at random) and is
allowed to complete its down. Thus, after an up on a semaphore with processes
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sieeping on it, the semaphore will still be 0, but therc will be one f‘eu.ter process
sleeping on it. The operation of incrementing the se1paphnre aqd waking up one
process 1s #lso indhvisible. No process ever blocks doing an up, just as no process
ever blocks doing a wakeup in the earlier model.

As an aside, 1n Dyjkstra’s original paper, he used the names P and V instead of
down and up, respectively, but since these have no mnemonic significance to peo-
ple who do not speak Dutch (and only marginal significance to those who do), we
will use the terms down and up instead. These were first introduced in Algol 68.

Solving the Producer-Consumer Problem using Semaphores

Semaphores solve the lost-wakeup problem, as shown in Fig. 2-24. [t is
essential that they be implemented in an indivisible way. The normal way is to
implement up and down as system calls, with the operating system briefly disa-
bling ail interrupts while it is testing the semaphore, updating it. and putting the
process to sleep, if necessary, As all of these actions take only a few imstructions,
no hann is done in disabling interrupts. if multiple CPUs are being used. each
semaphore should be protected by a lock variable, with the TSL instruction used to
make sure that only one CPU at a time examines the semaphore. Be sure you
understand that using TSL to prevent several CPUs from accessing the semaphore
at the same time is quite different from busy waiting by the producer or consumer
waiting for the other to empty or fill the buffer. The semaphore operation will
only take a few microseconds, whereas the producer or consumer might take arbi-
trarily long.

This solution uses three semaphores: ane called Jull for counting the number
of slots that are full, one called empty tor counting the number of slots thal are
empty, and one called mutex to make sure the producer anid consumer do not
access the buffer at the same time. Fulf is tnitially 0. empty is initially equal to
the number of slots in the buffer, and raurex is initially 1. Semaphores that are ini-
tialized to 1 and used by two or more processes to ensure that only one of them
can enter its critical region at the same time are called binary semaphores. If
each process does a down just before entering its critical region and an up just
after leaving it. mutual exclusion is guaranteed.

Now that we have a good Interprocess communication primitive al our dispo-
sal. let us go back and look at the tnterrupt sequence of Fig. 2-3 again. In a sys-
tem using semaphores. the natural way o hide interrupts is to have a semaphore,
initially set to (), associated with each I/Q device. Just after starting an /O device,
the managing process does a down on the associated semaphore. thus blocking
immediately. When the interrupt comes in, the interrupt handler then does an up
on the associated semaphore, which makes the relevant process ready to run
again. In this model, step S in Fig. 2-5 consists of doing an up on the device's
semaphore, so that in step 6 the scheduler will be able 10 run the device manager.
Of course, if several processes are now ready, the scheduler may choose to run an
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#define N 100 /* number of slots in the buffer */
typedef int semaphore; /> semaphores are a sggciat kiqd of int +/
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots »/
semaphore full = §; /* counts full buffer siots ~/

void producer(void)

{
int itemn;
while (TRUE) { /* TRUE is the constant 1 »/
item = produce_item{);  /* generate something to put in buffer */
down{&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert_itemiitemy); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&fuil); f* increment count of full slois */
}
}

void consumer(void)

{

int item;

while {TRUE) { f* infinite loop */
down{&full); /* decrement full count */
down(&mutex); /* enter critical region »/
item = remove_item( ); /* take item from buffer »/
up{&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume _item({itern); /* do something with the item */

)

Figure 2-24, The producer-consumer prublem using semaphores.

even more important process next. We will look at some of the algorithms used
for scheduling later on in this chapter.

In the example of Fig. 2-24. we have actually used semaphores in two dif-
ferent ways. This difference is important enough to make explicit. The mutex
semaphore is used for mutual exclusion. It is designed to guarantee that only one
process at a time will be reading or writing the buffer and the associated variables,
This mutual exclusion is required to prevent chaos. We will study mutual exclu-
sion and how to achieve it more in the next section.
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The other use of semaphores is tor synchronization. The full and empiy
semaphores are needed to guarantee that certain event sequences do or do not
occur. In this case, they ensure that the producer stops running when the buffer is
fuli, and the consumer stops running when 1t 15 empty. This vse is different from
mutual exclusion.

2.3.6 Mutexes

When the semaphore’s ability to count is not needed, a simplified version of
the semaphore, called a mutex, is sometimes used. Mutexes are good only for
managing mutual exclusion to some shared resource or piece of code. They are
easy and efficient to impiement, which makes them especially useful in thread
packages that are implemented entirely in user space.

A mutex is a variable that can be in one of two states: unlocked or locked.
Consequently, only 1 bit is required to represent it, but in practice an integer often
is used, with ¢ meaning unlocked and all other values meaning locked. Two pro-
cedures are used with mutexes. When a thread (or process) needs access to a crit-
ical region, it calls murex_lock. If the mutex is corrent unlocked (meaning that
the critical region is available), the call succeeds and the calling thread is free to
enter the critical region.

On the other hand, if the mutex is already locked, the calling thread is blocked
until the thread in the critical region is finished and calls mudex unlock. If multi-
ple threads are blocked on the matex. one of them is chosen at random and
allowed to acquire the lock. -

Because mutexes are so simple, they can easily be implemented in user space
if a TSL instruction is availabie. The code for mutex fock and murex _urdock for
use with a user-level threads package are shown in Fig. 2-25

mutex_lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok |'if it was zero, mutex was uniocked, so retyrs
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex_lock { try again later

ok: RET return to caller; critical region entered

miutex_unlock:
MOVE MUTEX #0 | store a 0 in mutex
RET | returmn to caller

Figure 2-25. [mplementation of mutex _{ock and mutex _uniock.

The code of mutex_lock is similar 10 the code of enier_region of Fig. 2-22
@ut with a crucial difference. When enter _region fails 1o enter the critical region,
it keeps testing the lock repeatedly {busy waiting). Eventually, the clock runs out
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and some other process Is scheduled to run. Sooner or later the process holding
the lock gets to run and releases it

With threads, the situation 15 different because there is no clock that stops
threads that have run (0o long. Consequently, a thread that tries 10 acguire a lock
by busy waiting will loop torever and never acquire the lock because it never
allows any other thread to run and release the lock,

That 15 where the difference between enter. region and muiex_{ock comes in.
When the later fails to acquire a lock, it calls thread _vield to give up the CPU to
anather thread. Consequently there is no busy waiting. When the thread runs the
next time, it lests the Jock again.

Since thread vield is just a call to the thread scheduler in user space, 1t is
very tast. As a consequence, neither mutex_flock nor mutex_uniock requires any
kernel calls. Using them, usce-level threads can synchronize entircly in user space
using procedures that require only a handful of instructions.

The mutex system that we have described above is a bare bones set of calls.
With all software, there is always a demand for more features, and synchroniza-
tion primitives are no exception. For example, sometimes a thread package offers
a call mustex_trylock that either acquires the lock or returns a code for failure, but
does not block. This call gives the thread the tlextbility 10 decide what to do next
if there are alternatives to just waiting.

Up until now there is an issue that we have glossed over lightly but which is
worth at least making explicit. With a user-space threads package there is no
problem with multiple threads having access to the same mutex since all the
threads operate in a common address space. However, with most of the earlier
solutions, such as Peterson’s algorithm and semaphores. there is an unspoken
assumption that multipte processes have access (o at least some shared memaory .
perhaps only one word, but something. If processes have disjoint address spaces,
as we have consistently said. how can they share the rrm variable in Peterson s
algorithm, or semaphores or a common buffer?

There are two answers. First, some of the shared data structures, such as the
semaphores, can be stored in the kernel and only accessed via svstem calts, This
approach eliminates the problem. Second. most modern operating  systems
(including UNIX and Windows) offer a way for processes to share some portion of
thetr address space with other processes. In this way. buifers and other data struc-
tures can be shared. In the worst case. that nothing else is possible. a shared file
can be used.

If two or more processes share most or all of their address spaces, the distine-
ticn between processes and threads becomes somewhat blurred but is nevertheless
present. Two processes that share a common address space still have different
open files, alarm timers, snd other per-process properties, whereas the threads
within a single process share them. And it is always true that multiple processes
sharing a common address space never have the efticiency of user-level threads
since the kernel is deeply involved in their management,
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2.3.7 Monitors

With semaphores interprocess communication looks easy, righn? Forger it
Look closely at the order of the downs before inserting or removing items from
the buffer in Fig. 2-24. Suppose that the two downs in the producer’s code were
reversed in order, so mutex was decremented before empry instead of afier it. If
the buffer were completely full, the producer would block, with mutex set to 0.
Consequently, the next time the consumer tried to access the buffer, it would do a
down on mutex. now 0, and block 100, Both processes would stay blocked forever
and no more work would ever be done. This unfortunate situation is called a
deadlock. We will study deadlocks in detail in Chap, 3.

This problem is pointed out to show how careful you must be when using
semaphores. Ome subtle error and everything comes to a grinding halt. [t is Jike
prograroming in assembly language, only worse, because the errors are race con-
ditions, deadlocks, and other forms of unpredictable and irreproducible behavior.

To make it easier to write correct programs, Hoare (1974) and Brinch Hansen
(1975) proposed a higher-level synchronization primitive cafled a monitor. Their
proposals differed slightly, as described below. A monitor is a collection of pro-
cedures, variables, and data structures that are all grouped together in a special
Kind of module or package. Processes may call the procedures in a monitor when-
ever they want to, but they cannot directly access the monitor’s internal data
structures from procedures declared outside the monitor, Figure 2-26 illustrates a
monitor written in an imaginary language, Pidgin Pascal.

monitor exampie
integer i;
condition ¢;

procedure producer )
emd;
procedure consuner{ ):
end;

end monitor;

Figure 2-26. A monitor.

Monitors have an important property that makes them useful for achieving
mutual exclusion: only one process can be active in a monitor at any instant.
Monitors are a programming language construct, so the compiler knows they are
special and can handle calls to monitor procedures differently from other pro-
cedure calls. Typically, when a process calls a monitor procedure, the first few
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mstructions of the procedure will check to see if any other process is currently
active within the monitor. If so. the calling process will be suspended until the
other process has lett the monitor. It no other process is using the monitor, the
catling process may enter. ,

Et is up to the compier ta implement the mutoal exclusion on monitor entries,
but a common way is to use a mutex or binary semaphore. Because the compiler,
not the programmer, is arranging for the mutual exclusion. it is much less likeiy
that something will go wrong. [n any event, the person writing the monitor does
not have to be aware of how the compiler arranges for mutual exclusion. It is suf-
ficient to know that by turning ail the critical regions inte montor procedures, no
two processes will ever execute their critical regions at the same time,

Although monitors provide an easy way to achieve mutual exclusion, as we
have seen above, that is not enough. We also need a way for processes to block
when they cannot proceed. In the producer-consumer problem. it is easy enough
to put all the tests for buffer-full and buffer-cmpty in monitor procedures, but how
should the producer block when i1 finds the buffer full”

The solution lies in the introduction of condition variables, along with two
operations on them, wait and signal. When a monitor procedure discovers that it
cannot continue (e.g., the producer finds the buffer full), it does a wait on some
condition vartable, say, full. This action causes the calling process to block. It
atso allows another process that had been previcusly prohibited from entering the
momior o enter now.

This other process, for example, the consumer, can wake up its sleeping
partner by doing a signal on the condition variable that its partner is waiting on,
To avoid having two active processes in the monitor at the same ume, we need a
rule telling what happens after a signal, Hoare proposed letting the newly awak-
ened process run, suspending the other one. Brinch Hansen proposed finessing
the problern by requiring that a process doing a signal must exit the monitor
immediately. In other words, a signal statement may appear only as the final
statement in 2 monitor procedure. We will use Brinch Hansen's proposal because
it is conceptually simpler and is also easier to implement. If  signal is done on a
condition variable on which several processes are waiting. only one of them,
determined by the system scheduler, is revived.

As an aside, there is also a third solution. not proposed by either Hoare or
Brinch Hansen. This is to let the signaler continue to run and aliow the waiting
process (o start running only after the signaler has exited the monitor,

Candition variables are not counters. They do not accumulate signals for later
use the way semaphores do. Thus if a condition variable is signaled with no one
waiting on it, the signai is lost forever. In other words. the wait must come before
the signal. This rule makes the implementation much simpler. In practice it is not
a4 problem because it is easy to keep track of the state of each process with vari-
abies, if need be. A process that might otherwise do a signal can see that this
operation is not necessary by looking at the variables.
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A skeleton of the producer-consumer problem with monitors 1s given in
Fig. 2-27 in an imaginary language, Pidgin Pascal. The advantage of using Pidgin
Pascal here is that it is pure and simple and tollows the Hoare/Brinch Hansen
model exactly.

monitor ProducerConsumer
condition ful!, empoy,
integer couni:

procedure inseri(itent: integer):
begin
if couwni = N then wait{fid! ).
nsert _itemf item};
caunt = count + 1]

if counr = | then signalf emprv)
end;

Functlon remove: integer;

begin
if count = 0 then waitiempry )
TEMOVE = Femave _item:
count i= count - |

if count = N — | then signal{fu/{}
end;

count =
end monitor:

procedure producer;
hegin
while true do
begin
item = produce _item;
ProducerConsumer.insert{ item)
end
end;

procedure consumer;
begin
while rrie do
begin
ftem = ProducerConsumer.remove:
COnsume _ilemfitem )
end
end:

Figure 2-27. An outline of the producer-consumer problem with monitors,
Only one monitor procedure at a time is active. The buffer has & sioss.
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You may be thinking that the operations wait and signal icok sintilar to s{eep
and wakeup, which we saw earlier had fatal race conditions. They are very simi-
lar, bur with one crucial difference: sleep and wakeup failed because while one
process was trying to go to sleep, the other one was trying to wake it up. With
monttors, that cannot happen. The automatic mutual exclusion on monitor pro-
cedures guarantees that if. say, the producer inside a monitor pracedure discovers
that the buffer is tull, it wiil be able to complete the wait operation without having
to worry about the possibility that the scheduler may switch to the consumer just
betore the wait completes. The consumer will not even be let into the monitor at
all until the wait is finished and the producer has been marked as no fonger run-
nabie,

Although Pidgin Pascal is an imaginary language. some real programming
languages also support monitors, although not always in the form designed by
Hoare and Brinch Hansen. One such language is Java. Java is an object-onented
language that supports user-tevel threads and also allows methods (proceduresy to
be grouped together into classes, By adding the keyword synchronized to a
method declaration, Java guarantees that once any thread has started executing
that method, no other thread will be allowed o start exceuting any other syn-
chronized method in that class.

A solution to the producer-consumer problem using monitors in Java is given
in Fig. 2-28. The solution consists of four classes. The outer class, ProducerCon-
Surmer, creates and starts two threads, p and ¢, The second and third classes, Pro-
ducer and consumer, respectively, contain the code for the producer and consu-
mer. Finally, the class our_monitor, is the monitor. It contains two synchrontzed
threads that are used for actually Inserting items into the shared buffer and taking
them out. Unlike in the previous examples, we have tfinally shown the full code
of insert and remove herc.

The producer and consumer threads are functionally identical to their counter-
parts in all our previous examples. The producer has an infinite loop generating
data and putting it into the common buffer. The consumer has an equally infinite
loop taking data out of the common buffer and doing some fun thing with it.

The interesting part of this program is the class our _monitor, which contains
the buffer, the administration variables. and two synchronized methods, When the
producer is active inside insert, it knows for sure that the consumer cannot be
active inside remove, making it safe to update the variables and the buffer without
fear of race conditions. The variable count keeps track of how many items are in
the buffer. It can take on any value from 0 through and including ¥ — {. The
variable Jo is the index of the buffer slot where the next item is to be fetched.
Similarly, Ai is the index of the buffer slot where the next item is to be placed. It
is permitted that /o = hi, which meuans either that 0 items or N 1tems are in the
buffer. The value of count tells which case holds.,

Synchronized methods in Java differ from classical MONIOrs th an essential
way: Java does noi have condition variables, Instead, it offers two procedures,
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wait? and notifv that are the equivalent of sieep and wukeup except that vféhen they
are used inside synchronized methods, they are not subjecr (o race canduionrs. ]F
theory, the method weit can be interrupted. which is what the code .*;urroundmg it
15 all aboul. Java requires that the exception handling be made explicit. For our
purposes. just imagine that go_ro_sleep is the way 10 go (o skeep.

By making the mutual exclusion of critical regions automatic, monitors make
parallel programming much less error-prone than with semaphores, Still, they too
have some drawbacks. It 1s not for nothing that our two examples of monitors
were in Pidgin Pascal and Java instead of C. as are the other examples in this
book. As we said earlier. monitors are a programming language concept. The
compiler must recognize them and arrange for the mutual exclusion somehow. C,
Pascal, and most other languages do not have monitors. so il is unreasonable to
expect their compilers to enforce any mutoal exclusion rules. in fact, how could
the compiler even know which procedures were in monitors and which were not?

These same languages do not have semaphores either. bul adding semaphores
is casy: All you need to do is add two short assembly code routines to the library
1o 1ssue the up and down system calls. The compilers do not even have to know
that they exist. Of course, the operating systems have to know about the sema-
phores, but at least if you have a semaphore-based Operating system, you can still
write the user programs for it in C or C4+ (or even assembly language if you are
masochistic enough). With monitors, you need a language that has them built in,

Another problem with monitors, and also with semaphores, is that they were
designed for solving the mutual exclusion problem on one or more CPUs thas ail
have access to a common memory. By putting the semaphores in the shared
memory and protecting them with TSL instructions, we can avoid races. When we
€0 10 a distributed system consisting of multiple CPUs, cach with its own private
niemory. connected by a local area network, these primitives become mapplica-
ble. The conclusion is that semaphores are too low level and MOoNItors are not
usable cxcept in a few programming languages. Also, none of the primitives pro-
vide for information exchange between machines, Something else is needed.

2.3.8 Message Passing

That something else is message passing. This method of interprocess com-
munication uses two primitives, send and receive. which. like semaphores and
untike monitors, are systemn calls rather than language constructs. As such. they
can easily be put into hbrary procedures, such as

send(destination, &message);
ind
receive{source, &message);

The former call sends a message to a given destination and the latter one receives
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public ¢lass ProgucerConsumaer {
static final int N = 100; / constant giving the buffer size
static producer p = new producer{}, / instantiate a new producer thread
static consumer © = new consurmer{ ); / instantiate a new consumar thread
static our_monitor mon = naw our_monitor{ ); I instantiate a new monitor

public static void main{String args[ }} {
p.stani ) /f start the producer thread
c.atartf | i stant the consumer thread

3

static class producer extends Thread |
public void run{} {/ run method contains the thread code
nt item;
while {true) {  / producer loop
item = produce_ itemy i;
mon.insert{item);
1
1
private int produce._itam{} { ...} K actually produce

}

static class consurar extends Thread {
public void run{) {rur method contains the thread code
int iterm;
while (true) {  // consumaer loop
ftern = mon.remove( ):
consumaea _itern {item);
i
}
private void consume _item(int item) { ... }// actually consume

}

static class our_monitor { // this is a monitor
private int butfer[ ] = new int{N];
private int count = 0, to =0, hi = 0; // counters and indices

pubiic synchronized vaid insert{int val) {
it {(count == N) go_to_slaep{); # if the buffer is full. go 1o slaep
buffer [hl] = val; # Insert an tem inte the buffer
Ri=fhi+1)%N; # slot to place next ltem in
count = count + 1,/ ona maore itam in the buffer now

, if {count == 1) notify(); # if consumer was sieeping, wake it up
public synchronized int remove ) {
irtt vai;

if {count == 0) go_to_sleep{); /it the buffer is empty, go 1o sleep
val = buffer [lo]; # fatch an itam from the buffer
lo =(lo+1}%N; /f slot to fetch next iterm from
count =count -1, J/ one faw items in the buffer
if {count == N - 1} notify( ); // # producer was sigeping, wake it up
return vat;
}
: private void go_to_sleep(} { try{wait{ ):} catch{InterruptedException axc) {1}

Figure 2-28. A solution to the producer-consumer problem in Java.
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a message from a given source (or from ANY, it the receiver does not ¢care). If no
message 15 available, the receiver can block until one arrives. Alternatively. it can
return immediately with an error code,

Design Issues for Message Passing Systems

Message passing systems have many challenging problems and design issues
that do not arise with semaphores or monitors, especially if the communicating
processes are on different machines connected by a network. For example, mes-
sages can be lost by the network. To guard against lost messages, the sender and
receiver can agree that as soon as a message has been received, the receiver will
send back a special acknowledgement message. If the sender has not received
the acknowledgement within a certain time interval, it retransmits the message.

Now consider what happens if the message itsel is received correctly, but the
acknowledgement is lost. The sender will retransmit the message, so the receiver
witl get it twice, It is essential that the receiver be able to distinguish a new mes-
sage from the retransmission of an old one. Usually. this problem is solved by
putting consecutive sequence numbers in each original message. I the receiver
gets a message bearing the same sequence number as the previous message, it
knows that the message is a duplicate that can be ignored. Successfully commun-
icating in the face of unreliable message passing ts a major part of the study of
computer networks. For more information, see (Tanenbaum, 1696).

Message systems also have to deal with the question of how processes are
named, so that the process specified in # send or receive call is unambiguous,
Authentication is aiso an issue in message systems: how can the client tell that he
ts communicating with the real file server, and not with an imposter?

At the other end of the spectrum, there are also design issues that are impor-
tant when the sender and receiver are on the same machine. One of these is per-
formance. Copying messages from one process to another is always slower than
doing a semaphore operation or entering a monitor. Much work has gone into
making message passing efficient. Cheriton (1984), for example, suggested limit-
ing message size to what will fit in the machine’s registers, and then deing mes-
sage passing using the registers.

The Producer-Consumer Problem with Message Passing

Now let us see how the producer-consumer problem can be solved with mes-
sage passing and no shared memory. A solution is given in Fig. 2-29. We assume
that all messages are the same size and that messages sent but not vet received are
buffered automatically by the operating system. In this solution, a total of N mes-
sages is used, analogous to the N slots in a shared memory buffer. The consumer
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starts out by sending V¥ empty messages to the producer. Whenever the producer
has an item to give to the consumer, if takes an empty message and sends back a
full one. In this way, the total number of messages in the system remains constant
in time. so they can be stored in a given amount of memory known in advance.

If the producer works faster than the consusmer. all the messages will end up
fuil. waiting for the consumer: the producer will be blocked. waiting for an empty
to come back. If the consumer works taster, then the reverse happens: all the
messages wiil be empties waiting for the producer to fill them up: the consumer
will be biocked, waiting for a full message.

#define N 100 /* number of slots in the buffer */
void producer{void)
{
int item,
message m; /= message huffer »/
while (TRUE) {
item = produce_itemn( }; /= generate something to put in buffer »/
receive(consumer, &mj; /* wait for an empty to artive */
build _.message(&m, item};, '« construct a message to send */
\ send{consumer, &m); * send item to consumer */
}
void consumer(void)
{ .
int itemn, i;
message m;
for (i = 0; i < N; i++) send{producer, &m); /* send N empties */
while (TRUE) {
recewe{producgr, &m); /* get message comtaining item +/
Rem = extract. item{&m); /* extract itern from message */
sand(prodqc:er, &m}; /* send back empty reply =/
\ consurme  itemnf{item); /* do something with the itemn */
}

Figure 2-29. The producer-consumer problem with & messapes.

Many variants are possible with message passing. For starters, et us look at
how messages are addressed. One way Is to assign each process a unique address
and have messages be addressed to processes. A different way Is to invent a new
dzfta structure, called a mailbox. A mailbox is a place to buffer a certain number
of messages, typically specified when the mailbox is created. When mailboxes
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are used, the address parameters in the send and receive calls are mailboxes, not
processes. When a process trees to send to a muilbox that 1s full, it is suspended
until a message is removed from that mailbox, making room for a new one.

For the producer-consumer problem, both the producer and consumer would
create mailboxes large enough to hold N messages. The producer would send
messages containing data te the consumer’s mailbox, and the consumer would
send empty messages to the producer’s mailbox. When mailboxes are used, the
buffering mechanism is clear: the destination mailbox holds messages that have
been sent to the destination process but have not yet been accepted.

The other extreme from having mailboxes is to eliminate all buffering. When
this approach is followed, if the send is done before the receive, the sending proc-
ess is blocked until the receive happens, at which time the message can be copied
directly from the sender to the receiver, with no intermediate buffering. Simi-
larly, if the receive is done first, the receiver is blocked uniil a send happens.
This strategy is often known as a rendezvous, It is easier to implement than a
buffered message scheme but is less flexible since the sender and receiver arc
forced to run in lockstep.

Message passing is commonly used in parallel programming systemns. One
well-known message-passing system, for example, is MPI (Message-Passing
Interface). It is widely used for scientific computing. For more information
about it, see for example (Gropp et al., 1994: and Snir et al., 1996).

2.3.9 Barriers

Our last synchronization mechanism is intended for groups of processes rather
than two-process producer-consumer type situations. Some apphcations are
divided into phases and have the rule that no process may proceed into the next
phase until all processes are ready o proceed to the next phase. This behavior
may be achieved by placing a barrier at the end of each phase. When a process
reaches the barrier, it is blocked until all processes have reached the barrier. The
operation of a barrier is illustrated in Fig. 2-30.

In Fig. 2-30(a) we see four processes approaching a barrier. What this means
is that they are just computing and have not reached the end of the current phase
yet. After a while, the first process finishes all the computing required of it during
the first phase. It then executes the barrier primitive, generally by calling a library
procedure. The process is then suspended. A litle later, a second and then a third
process finish the first phase and also execute the barrier primiitive. This situation
is illustrated in Fig. 2-30(b). Finally, when the last process, C, hits the barrier, all
the processes are released, as shown in Fi g. 2-30{c).

As an example of a problem requiring barriers, consider a typical relaxation
problem in physics or engineering. There is typically a matrix that contains some
initial values. The values might represent temperatures al various points on a
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Figure 2-30. Use of u bamier. (a} Processes approaching a barrier. th) Al
processes but one blocked at the barrier. (¢} When the last process arrives at the
parrier, al! of tham are et through,

sheet of metal. The idea might be to calculate how long it takes for the effect of a
flame placed at one corner to propagate throughout the sheet.

Starting with the current values, a transformation is applied to the matrix to
get the second version of the matrix, for example. by applying the laws of thermo-
dynamics to see what all the temperatures are AT ilater. Then the processes is
repeated over and over, giving the temperatures at the sample points as 4 function
of time as the sheet heats up. The algorithm thus produces a series of matrices
over time.

Now imagine that the matrix is very large (say, | million by | million), so that
paratlel processes are needed (possibly on a multiprocessor) to speed up the calcu-
lation. Different processes work on different parts of the matrix. calculating the
new matrix elements from the old ones according to the laws of physics. How-
eVEr, No process may start on iteration » + | until iteration n is complete, that is,
until all processes have finished their current work. The way to achieve this goal
is 10 program each process to execute a barrier operation after it has finished its
part of the current iteration. When all of them are done, the new matrix (the input
to the next iteration) will be finished, and all processes will be simuhaneously
released to start the next iteration.

2.4 CLASSICAL 1PC PROBLEMS

The operating systems literature is full of interesting problems that have been
widely discussed and analyzed using a variety of synchronization methods. In the
following sections we will examine three of the better-known problems. '
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2.4.1 The Dining Philosophers Problem

In 1965, Dijkstra posed and solved a synchronization problem he called the
dining philosophers problem. Since that time, everyone inventing yet another
synchronization primitive has felt obligated to demonstrate how wonderful the
new primitive is by showing how elegantly it solves the dining philosophers prob-
lem. The problem can be stated quite simply as follows, Five philosophers are
scated around a circular table. Each philosopher has a plate of spaghetti. The
spaghetti is so slippery that a philosopher needs two forks to cat it. Between each
pair of plates is one fork. The layout of the table is illustrated in Fig. 2-31.

Figure 2-31, Lunch time in the Philosophy Deparntment,

The life of a philosopher consists of alternate periods of eating and thinking.
(This is something of an abstraction, even for philosophers, but the other activities
are irrelevant here.) When a philosopher gels hungry, she tries to acquire her left
and right fork, one at a time, in either order. If successful in acquiring two forks,
she eats for a while, then puts down the forks, and continues to think. The key
question is; Can you write a program for each philosopher that does what it is sup-
posed to do and never gets stuck? (1t has been pointed out that the two-fork
requirement is somewhat artificial: perhaps we should switch from Italian food to
Chinese food, substituting rice for spaghettt and chopsticks for forks, )

Figure 2-32 shows the obvious solution. The procedure fake_fork waits until
the specified fork is available and then seizes it. Unfortunately, the obvious salu-
tion is wrong. Suppose that all five philosophers take their left forks sirnultane-
ously. None will be able to take their right forks, and there will be 1 deadlock.

We could modify the program so that atter taking the left fork, the program
checks to see if the right fork is available., If it is not, the philosopher puts down
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#define N 5 /* number of philosophers */
void philosopher(int i) /* . philosopher number, from ¢ to 4 +/
{
hile {TRUE . o
N tr{nink( )i H /+ philosopher is thinking */
take_fork{i); /* take left fork */
take _fork{(i+1) % N); {/* take right fork; % is modulo operator+/
eal( }; /* yumn-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put _fork((i+1} % N); /* put right fork back on the table */

Figure 2-32. A nonsolution to the dining philosophers problent.

the left one, waits for some time, and then repeats the whole process. This propo-
sal too, fails, although for a different reason. With a litle bit of bad luck, ali the
philosophers could start the algorithm simultaneously, picking up their left forks.
seeing that their right forks were not available, putting down their left forks, wait-
ing, picking up their left forks again stmultaneously, and so on, forever. A sitya-
tion like this, in which all the programs continue to run indefinitely but fail to
make any progress is called starvation. {It is called starvation cven when the
probiem does not occur in an Italian or 2 Chinese restavrant. )

Now you might think, “Hf the philosophers would Just wait a random time
instead of the same time after failing to acquire the right-hand fork, the chance
that everything would continue in lockstep for even an hour is very small.”” This
observation is true, and in nearly all applications trying again later is not a prob-
lem. For example, in the popular Ethernet local area network, if two computers
send a packet at the same time, each one waits a random time and tries again; in
practice this solution works fine. However, in a few applications one would
prefer a solution that always works and cannot fail due 1o an unhkely series of
random numbers. Think about safety control in a nuclear power plant.

One improvement to Fig. 2-32 that has no deadlock and no starvation is to
protect the five statements following the call to think by a binary semaphore.
Before starting to acquire forks, a philosopher would do a down on mutex. After
replacing the forks, she would do an up on mutex. From a theoretical viewpoint,
this solution is adequate. From a practical one, it has a performance bug: only one
philosopher can be eating at any instant. With five forks availabie, we should be
able to atllow two philosophers to eat at the same time.

The solution presented in Fig. 2-33 is deadlock-free and allows the maximum
parallelism for an arbitrary number of philosophers. It uses an array, state. o
keep track of whether a philesopher is cating, thinking, or hungry (trying to
acquire forks). A philosopher may move only into eating state if neither neighbor
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#define N 5
#define LEFT (i+N-1)%N
#detfine RIGHT (i+1)%N

#define THINKING 0O
#define HUNGRY 1
#define EATING 2
typedef int semaphore;
int state{N];

semaphore mutex = 1;

samaphore s[N];

void philosopher(int i}
{
while (TRUE) {
think{ };
take _forks(i);
eat();
put_forks{i);

}

void take_forks(int i)

{
down{&mutex);
statefi] = HUNGRY:;
test(i);
up{&mutex);
down(&sli]};

1

void put_ forks(i)

down{&mutex):
state[i] = THINKING;
test{LEFT);
test{RIGHT):
up{&mutex);

}

void test{i)

/* number of philosophers */

/* number of I's left neighbor */

{* number of i's right neighbor */

/* philosopher is thinking =/

/* philosopher is trying to get forks */

/* philosopher is eating */

H* semaphores are a special kind of int »/
/* array 10 keep track of everyone’s state */
f* muotual exclusion for critical regions »/

/* one semaphore per philosopher «/

/* i. philosopher number, from 0 to N—1 */

f* rapeat forever */

/= philosopher is thinking */

{* acquire two forks or block */
{* yum-yum, spaghetti »/

f* put both forks back on table */

/1. philosopher number, from 0 to N-1 »/

/+ enter critical region */

/= record fact that philosopher i is hungry */
/* try 10 acquire 2 forks */

/* exit critical region +/

/* block if forks were not acquired */

/* 1. philasepher number, from O to N—1 #/

/* anter critical region */

/* philosopher has finished eating */
/= see if left neighbor can now eat »/
/* see if right neighbor can now eat */
/* exit critical region */

/= i: philosepher numbet, from 0 to N—1 »/

if (state]i] == HUNGRY && state[LEFT] |= EATING && state[RIGHT] |= EATING} {

state[i] = EATING:
up{&s[i]);

Figure 2-33. A solution to the dining phifosophers problem.
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15 eating. Philosopher {'s neighbors are defined by the macros LEFT and RIGHT.
In other words, if i is 2, LEFT is | and RIGHT is 3.

The program uses an array of semaphores, one per philosopher, so hungry
philosophers can block if the needed forks are busy. Note that each process runs
the procedure philosopher as its main code. but the other procedures, take _furks,
put_forks, and test are ordinary procedures and not separate processes.

2.4.2 The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are
competing for exclusive access to a limited number of resources, such as YO
devices. Another famous problem is the readers and writers problem (Courtos et
al., 1971), which models access to a database. fmagine, for example, an airline
reservation system, with many competing processes wishing to read and write it.
It 13 acceptable to have multiple processes reading the database at the same time,
but 1f one process is updating (writing) the database, no other processes may have
access to the database, not even readers. The question is how do you program the
readers and the writers? One solution is shown in Fig. 2-34

In this solution, the first reader to ge1 uccess to the database does a down on
the semaphore db. Subsequent readers merely ncrement a counter. re. As
readers leave, they decrement the counter and the last one out does an up on the
semaphore, allowing a blocked writer, if there is one, to get in,

The solution presented here implicitly contains a subtle decision that is worth
commenting on. Suppose that while a reader is using the database, another reader
cames glong. Since having two readers at the same time is not a probiem. the
second reader is admitted. A third and subsequent readers can also be admitted if
they come along.

Now suppose that a writer comes along. The writer cannot be admitted o the
database, since writers must have exclusive access. so the writer is suspended.
Later, additional readers show up. As long as at least one reader is stiil active.
subsequent readers are admitted. As a consequence of this strategy, as long as
there is a steady supply of readers, they will all get in as soon as they arrive. The
writer will be kept suspended until no reader is present. If a new reader arrives,
say, every 2 seconds. and each reader takes 5 seconds to do its work, the wriler
witl never get in.

To prevent this situation, the program could be written slightly differently:
when a reader arrives and a writer is waiting, the reader is suspended behind the
writer instead of being admitted immediately. In this way, a writer has 1o wait for
readers that were active when it arrived to finish but docs not have to wait for
readers that came along after it. The disadvantage of this solution is that it
achieves less concurrency and thus lower performance. Courtois et al. present a
solution that gives priority to writers. For detajls, we refer you to the paper.
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typedef int semaphore;
semaphore mutex = 1;
semaphore db = 1;

int rc = G,

veid reader(void)
while (TRUE) {

down{&mutex};
rc=1r¢c+1,

if {rc == 1) down{&db);

up{&mutex);
road_data_base();
down{&mutex);
rc=rc-1;

if (rc == 0) up{&db);
up(&mutex);
use_data_read();

void writer{void)
{
while {TRUE) {
think_up _data{);
down{&db);
write _data_base();
up(&db};

CLASSICAL IPC PROBLEMS

/* Use your imagination */
f* controls access to 'ro' */
i* controls access to the databhase */

129

/*= # of processes reading or wanting to =/

/* repeat farever *»/

/* get exclusive access to 'ro’ »/

/* Qne reader more rnow */

f* if this is the first reader .., +/

/* release exclusive access to 'ro' */
/* access the data ~/

{* get exclusive access to 'ro’ */

{* one readar fewer now */

/* if this is the last reader ... «/

/* release exclusive access to 'r¢' »/
/* noncritical ragion */

/* repeat forever +/

/* noncritical region +/

/* get exclusive access */

/* update the data */

/* release exclusive access */

Figure 2-34. A solution to the readers and writers problem.

2.4.3 The Sleeping Barber Problem

Another classical 1PC problem takes place in a barber shop. The barber shop
has one barber, one barber chair, and » chairs for waiting customers, if any, to sit
on. If there are no customers present, the barber sits down in the barber chair and
falls asleep, as illustrated in Fig. 2-35. When a customer arrives, he has o wake

up the sleeping barber. If additiona customers arrive while the

barber is cutting a

customer’s hair, they either sit down (if there are empty chairs) or Jeave the shop
(if all chairs are full). The problem is to program the barber and the customers
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without getting into race conditions. This problem is similar to various g}leuﬂing
situations, such as a multiperson helpdesk with a computerized call waiting sys-
tem for holding a limited number of incoming calls.

Figure 2.35. The sleeping barber,

Qur solution uses three semaphores: customers, which counts wditing cuslo-
mers (cxcluding the customer in the barber chair, who is not waiting ), barbers. the
number of barbers (0 or |} who are idle. walting for customers. and mutex, which
is used for mumial exclusion. We also need a variable, warting, which also counts
the waiting customers. It is essentially a copy of customers. The reason for hav-
ing waiting is that there is no way to read the current value of a semaphore. In
this solution, a customer enlering the shop has to count the nutnber of waiting cus-
tomers. If it is less than the number of chairs, he stays; otherwise, he leaves.

Qur solution is shown in Fig. 2-36. When the barber shows up for work in the
mornmg. he executes the procedure barber, causing him to block on the sema-
phore customers because it is initially 0. The barber then goes to sleep, as shown
in Fig. 2-35. He stays asleep until the first customer shows up.



SEC. 24 CLASSICAL IPC PROBLEMS 131

#detine CHAIRS 5 /* # chairs for waiting customers */
typedef int semaphore; /* use your imagination */

semaphore customers = 0, /* # of customers waiting for service */
semaphore barbers = G, /= # of barbers waiting for customers «/
semaphore mutex = 1; /* for mutual exclusion */

int waiting = 0; /* customers are waiting (not being cut) */

void barber(void)

{
white (TRUE) { _
down{&customers); /* go to sleep if # of customers is 0 */
down(&mutex); /* acquire access to ‘'waiting’ +/
waiting = waiting - 1; /* decrement count of waiting customers */
up{&barbers); /* one barber is now ready to cut hair +/
up{&mutex): /* release ‘waiting’ */
cut_hair{); /* cut hair {outside critical region) +/
}
}
void customer(void)
{
down{&mutex); /* enter critical region */
if (waiting < CHAIRS) { f* if there are no free chairs, leave */
waiting = waiting + 1; /* increment count of waiting customers »/
up{&customers); /* wake up barber if necessary */
up(&mutex); /* release access to ‘'waiting' +/
down{&barbers); /* go to steep if # of free barbers is 0 +/
get_haircut(); /* be seated and be serviced */
} eilse {
up{&mutex); /* shop is full; do not wait */
}

Figure 2-36. A solution to the sieeping barber prohlem.

When a customer arrives, he executes customer, starting by acquiring mutex
to enter a critical region. If another customer enters shortly thercafter, the second
one will not be able to do anything until the first one has released mutex. The cus-
tomer then checks to see if the number of waiting customers is less than the
number of chairs. If not, he releases musex and leaves without a haircut.

If there is an available chair, the customer increments the integer variabie,
waiting. Then he does an up on the semaphore customers, thus waking up the
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barber. At this point, the customer and barber are both awake. When the custo-
mer releases mutex, the barber grabs it, does some housekeeping. and begins the
haircut. .
When the haircut is over, the customer exits the procedure and leaves the
shop. Unlike our earlier examples, there is no loop for the customer because each
one gets only one haircut. The barber loops, however, to try to get the next custo-
mer. If one is present, another haircut is given. If not, the barber goes to sieep.
As an aside, it is worth pointing out that although the readers and writers and
sleeping barber problems do not involve data transfer, they are still belong to the
area of IPC because they involve synchronization between multiple processes.

2.5 SCHEDULING

When a computer is multiprogrammed, it frequently has multiple processes
competing for the CPU at the same time. This situation occurs whenever two or
more processes are simultaneously in the ready state. If only one CPU is avail-
able, a choice has to be made which process to run next. The pait of the operating
system that makes the choice is called the scheduler and the algorithm it uses is
called the scheduling algorithm. These topics form the subject matter of the fol-
lowing sections.

Many of the same issues that apply 10 process scheduling also apply to thread
scheduling, although some are different. Inidally we will focus on process
scheduling. Later on we will explicitly look at thread scheduling.

2,5.1 Introduction to Scheduling

Back in the old days of batch systems with nput in the form of card images
on a magnetic tape, the scheduling algorithm was simple: just run the next job on
the tape. With timesharing systems, the scheduling algorithm became more com-
plex because there were generally multiple users waiting for service. Some main-
frames still combine batch and timesharing service, requiring the scheduler to
decide whether a batch job or an interactive user at a terminal should go next. (As
an aside, a baich job may be a request to run multiple programs in succession. but
for this section, we will just assume it is a réquest to run a single program.)
Because CPU time is a scarce resource on these machines, a good scheduler can
make a big difference in perceived performance and user satisfaction. Conse-
quently, a great deal of work has gone into devising clever and efficient schedul-
ing algorithms.

With the advent of personal computets, the situation changed in two wayvs.
First, most of the time there is only one active process. A user entering a docu-
Ment on a word processor is unlikely to be simultaneously compiling a program in
the background. When the user types a command to the word processor, the
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scheduler does not have to do much work to figure out which process 1o run—the
word processor is the oaly candidate. _

Second, computers have gotien so much faster over the years that the CPU s
rarcly a scarce resource any more. Most prograins for personal computers are
timited by the rute at which the user can present input (by typing or clicking), not
by the rate the CPU can process it. Even compilations, a major sink of CPU
cycles in the past, take just a few seconds al most nowadays. Even when two pro-
grams are actually running at once, such as a word processor and a spreadsheet, it
hardly matters which goes first since the user is probably waiting for both of them
to finish. As a consequence, scheduling does not matter much on simple PCs.
(Of course, there arc applications that practically eat the CPU alive: rendering one
hour of high-resolution video may require industrial-strength image processing on
cach of 108,000 frames in NTSC (90,000 in PAL), but these applications are the
exception rather than the rule.]

When we turn to high-end networked workstations and servers, the situation
changes. Here multiple processes often do compete for the CPU, so scheduling
matters again. For example, when the CPU has to choose hetween running a
process that updates the screen after a user has closed a window and ranning a
process that sends out queucd email, it makes a huge difference in the perceived
response. If closing the window were to take 2 sec while the email was being
sent, the user-would probably regard the system as extremely sluggish, whereas
having the email delayed by 2 sec would not cven be noticed. In this case, proc-
ess scheduling matters very much.

In addition 1o picking the right process to run, the scheduler also has 10 WOITY
about making efficient use of the CPU because process switching is expensive,
To start with, a switch from user mode to kernel mode must occur. Then the state
of the current process must be saved, includin £ storing s registers in the process
table so they can be reloaded later. In many systems. the memory map {c.g..
memory reference bits in the page table) must be saved as well. Next a new proc-
ess must be selected by running the scheduting algorithm. After that, the MMU
must be reloaded with the memory map of the new process. Finally, the new
process must be started. In addition to all that, the process switch usually ivali-
dates the entire memory cache, forcing it to be dynamically reloaded from the
main memory twice (upon entering the kernel and upon leaving it). Ali in afl,
doing t00 many process switches per second can chew up & substantial amount of
“CPU ume. so caution is advised.

Praocess Behavior

Nearly all processes alternate bugsts of compuiing with {disk) 140 requests, as
shown in Fig. 2-37. Typically the CPU runs for a while without stopping, then a
system cali is made to read from a file or write to a file. When the system call
cempletes, the CPU computes again until it needs more. data or has [Q. Write more
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data, and so on. Mote thal some /O activities count as computing. _For example.
when the CPU copies bits to a video RAM to update the screen, it is computing,
not doing 1/O. becawse the CPU is in use, /O in this sense 15 trvhen a process
enters the blocked state waiting for an external device to compiete its work.

@@ | ] — 1 i
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Lang CPLU burst
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Short CPU burst

/

iy T H—— +—— ] {1

Time
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Figure 2-37. Bursis of CPU usage alternate with periods of walling for 20, ta)
A CPU-bound process. (b) An VO-bound process.

The umportant thing to notice about Fig. 2-37 is that some processes, such as
the one in Fig. 2-3%(a), spend most of their fime computing, while others, such as
the one in Fig. 2-37(b), spend most of their time waiting for /O, The former are
called compute-bound; the latter are called YO-bound. Compute-bound
processes typically have long CPU bursts and thus infrequent YO waits. whereas
I/O-bound processes have short CPU bursts and thus frequent /O waits. Note that
the key factor is the length of the CPU burst. not the length of the IO burst. [/O-
bound processes are 10 bound because they do not compute much between 1/0)
requests, not because they have especially long I/O requests. It takes the same
time to read a disk block no matter how much or how little time it takes to process
the data after they arrive,

It is worth noting that as CPUs get faster, processes tend to get more (()-
bound. This effect occurs because CPUs are improving much faster than disks.
As a consequence, the scheduling of O-bound processes is fikely to become a
more important subject in the future. The basic idea here is that if an 1/O-bound
process wants o run, it should get a chance quickly so it can issue its disk request
and keep the disk busy.

When to Schedule

A key tssue related to scheduling is when (0 make scheduling decisions. It
turns out that there are a variety of situations in which scheduling is needed. First,
when a new process is created, a decision needs to be made whether to run the
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parent process or the child process. Since both processes are in ready state. it is a
normal scheduling decision and it can go either way, that is, the scheduler can leg-
itimately choose to run either the parent or the child next.

Second, a scheduling decision must be made when a process exits, That proc-
ess can no longer run (since it no longer exists), so some other process must be
chosen from the set of ready processes. [f ne process is ready, a system-supplied
idle process is normally run,

Third, when a process biocks on 1/Q, on a semaphore, or for some other rea-
son, another process has to be selected to run. Sometimes the reason for blocking
may play a role jn the choice. For example, if A is an important process and it ig
waliting for B to exit its critical region, letting B run next will allow it to exit its
critical region and thus let A continue. The troubie, however, is that the scheduler
generally does not have the necessary information to take this dependency into
dccon.

Fourth, when an /O interrupt occurs. a scheduling decision may be made, I
the interrupt came from an /O device that has now completed its work, some
process that was blocked waiting for the /O may now be ready to run. It is up to
the scheduler 1o decide if the newly ready process should be run, if the process
that was running at the time of the interrupt should continue running, or if some
third process should run,

i a hardware clock provides periodic mterrupts at 50 Hz, 60 Hz, or some
other frequency, a scheduling decision can be made at each clock interrupt or at
every A-th clock interrupt. Scheduling algorithms can be divided into two
categories with respect to how they dexzl with clock interTupts. A nonpreemptive
scheduling algorithm picks a process to run and then Just lets it run untif it blocks
{etther on I/O or waiting for another process) or until it voluntarily releases the
CPU. Even if it runs for hours, it will not be forceably suspended. 1n effect. no
scheduling decisions are made during clock interrupts. After clock mterrupt proc-
essing has been completed, the process that was running before the interrupt is
always resumed.

In contrast. a preemptive scheduling algorithm picks a process and lets it run
for a maximum of some fixed time. 1f it is still running at the end of the time
.Interval. it is suspended and the scheduler picks another process to run (if one is
available). Doing preemptive scheduling requires having a clock mnterrupt occur
. at the end of the time interval to give control of the CPU back to the scheduler. If
- 10 clack is available, nonpreemptive scheduling is the only aption.

Categories of Scheduling Algorithms

Not surprisingly, in different environments different scheduling algorithms are
needed. This situation arises because different application areas {and different
kinds of operating systems) have different goals. In other words, what the sched-
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uler shouid optimize for is not the same in all systems. Three environments worth
disnnguishing are

[. Batch.

2. Interactive.

3. Real nme.

In baich systems, there are no users impatiently waiting at their terminals for a
guick response. Consequently. nonpreemptive algorithms, or preemptive algo-
rithms with leng time periods for each process are often acceptable. This
approach reduces process switches and thus improves performance,

in an enviromiment with interactive users, preemption is essential o keep one
process from hogging the CPU and denying service to the others. Even if no
process intentionally ran forever, due to a program bug, one process might shut
out alf the others indefinitely. Preemption is needed to prevent this behavior,

In systems with real-time constraints, preemption is, oddly enough, sometimes
not needed because the processes know that they may not run for long periods of
ume and usuatly do their work and block quickly. The difference with interactive
systems is that real-time systems run only programs that are intended to further
the application at hand. Interactive systems are general purpose and may run arbi-
trary programs that are not cooperative or even malicious.

Scheduling Algorithin Goals

In order to design a scheduling aigorithm, it is necessary 1o have some idea of

. what a good algorithm should do. Some goals deperd on the environmem (batch,

interactive, or real time), but there are also some that are desirable in ali cases.
Some goals are listed in Fig. 2-38. We will discuss these in turn below.

Under all circumstances, fairness is important, Comparahle processes should
get comparable service. Giving one process much more CPU time than an eguiv-
alent one is not fair, OF course, different categories of processes may be ireated
very differently. Think of safety control and doing the pavroll at a nuclear
reactor’s computer center.

Somewhat related to faimess is enforcing the system’s policies. If the local
policy is that safety control processes get to run whenever they want to, even if it
means the payroil is 30 sec late. the scheduler has to make sure this policy s
enforced.

Another general goal is keeping all parts of the system busy when possible. If
the CPU and al! the /O devices can be kept running al} the time, more work gets
dome per second than if some of the components are idle. In a batch system, for
example, the scheduler has control of which jebs are brought into memory (o run.
Having some CPU-bound processes and some 5/O-bound PICCESSES 1N memory
logether is a better idea than first loading and running all the CPU-bound Jobs and
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Ail systems
Fairness - giving each process a fair share of the CPLU

Policy enforcement - seeing that stated policy is carried cut
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Tumarournd time - minimize time between submission and termination
CPU utitization - keep the CPU busy all the time

Interactive systems
Hesponse time - respond to requests quickly
Propartionalty - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictabikty - avoid quality degradation in muitimedia systems

Figure 2-38. Soie goals of the scheduling algorithm under different circumstances.

then when they are finished loading and running all the /Q-bound Jobs. If the
latter strategy is used, when the CPU-bound processes are running, they will fight
for the CPU and the disk will be idle. Later, when the /O-bound jobs come in,
they will fight for the disk and the CPU will be idle. Betler to keep the whole sys-
tem runming at once by a careful mix of processes.

The managers of large computer centers that run many batch jobs typically .
look at three metrics to see how well their systems are performing: throughput,
turnaround trme, and CPU utilization. Throughput is the number of jobs per
hour that the system completes. All things considered, finishing 50 jobs per hour
1s better than finishing 40 jobs per hour. Turmaround time is the statisticatly
average time from the moment that a batch job is submitied until the moment it is
completed. It measures how long the average user has to wait for the OLLpiL.
Here the rule is: Small is Beautiful.

A scheduling algorithm that maximizes throughput may not necessarily
minirmize turnaround time. For example, given a mix of short Jobs and long jobs,
a scheduler that always ran short jobs and never ran leng jobs might achieve an
excetlent throughput (many short jobs per hour) but at the cxpense of a lerrible
turnaround time for the long jobs. If short johs kept arriving at a steady rate, the
long jobs might never run, muking the mecan turnaround time mfinile while
achzeving a high throughpur.

CPU utilization s also an issue with batch systems because on the hig main-
frames where batch systems run, the CPU is still 4 mator expense, Thus computer
center managers feel guilty when it is not running all the time. Actually though,
this 1s not such a good metric. What really matters is how many jobs per hour
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come out of the system (throughput) and how long it takes to get a job back (tur-
naround time}. Using CPU utilization as a metnc is like rating cars based on how
many fimes per hour the engine turms over. o

For interactive sysiems, espectally timesharing systems and servers, different
goals apply. The mosl important one is to minimize response time, that is the
time between issuing a command and getting the result. On a personal computer
where a background process is running {for example, reading and storing cmajl
from the network), 4 user request to start a program or open a file should take pre-
cedence over the background work. Having all interactive requests go first will
be percetved as good service.

A somewhat related issuc is what might be called proportionality, Users
have an inherent (but often incorrect) idea of how long things should take. When
a request that is perceived as complex takes a long time, users accept that, but
when a request that is perceived as simple 1akes a long ume, users pet trritated.
For example, if clicking on a icon that calls up an Internet provider using an ana-
log modem takes 45 seconds to establish a comnection, the user will probably
accepl that as a fact of life. On the other hand, if clicking on an icon that breaks
the connection takes 45 scconds, the user wiil probably be swearing a blue streak
by the 30-sec mark and frothing at the mouth by 45 scc. This behavior is due 1o
the common user perception that placing a phone call and getting o connection is
supposed 10 take a lot longer than just hanging up. In some cases (such as this
one), the scheduler cannot do anything about the response time, but in other cases
it can, especially when the delay is due to a poor choice of process order.

Real-time systems have ditferent propesties than interactive systems, and thus
ditferent scheduling goals. They are characterized by having deadlines that must
or at least should be met. For exumple. if a compuier is controtling a device that
produces data at a regular rate, faiice to run the data-collection process on time
may result in lost data. Thus the foremost need in a reai-time system 1S meeting
all {or most) deadlines.

In some real-time systems, cspecially those involving multimedia. predictabil-
ity is important. Missing an occasional deadline is not fatal. but if the audio proc-
ess runs too erratically, the sound quality wilt deteriorate rapidly. Video is also an
issue. but the ear is much more sensitive to Htter than the eye. To avoid this prob-
lem, process scheduling must be hghly predictable and regular. We will study
batch and interactive scheduling algorithms in this chapter but defer most of our

study of real-time scheduling until we come to multimedia operaling systems in
Chap. 7.

2.5.2 Scheduling in Batch Systems
Ii 15 now time to turn from general scheduling issues to specific scheduling

algorithms. In this section we will look at algorithms used in batch systems. In
the following ones we wiil examine interactive and real-time systems. [t is worth
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pointing out that some algonthms are used in both batch and interactive sy:;_tf:ms.
We will study these later. Here we will focus on algorithms that are only suitable
in batch systems.

First-Come First-Served

Probably the simplest of all scheduling algorithms is nonpreemptive first-
come first-served. With this algorithm, processes are assigned the CPU in the
order they request it. Basically, there is a single queue of ready processes. When
the first job enters the system from the outside in the morning, it is sturied
immedtately and allowed to run as long as it wants to. As other jobs come in,
they are put onto the end of the quene. When the running process blocks. the first
process on the queue is run next. When a blacked process becomes ready, like a
newly arrived job, it is put on the end of the queue.

The great strength of this algorithm is that it is easy to understand and equally
casy to program. It is also fair in the same sense that allocating scarce Sports or
concert tickets to people who are willing to stand on line starting at 2 A.M. is fair.
With this algorithm, a single linked list keeps track of ail ready processes. Pick-
ing a process to run just requires removing one from the front of the gueue.
Adding a4 new job or unblocked process just reguires attaching it to the end of the
queue. What could be simpler?

Unfortunately, first-come first-served aiso has a powerful disadvantage. Sup-
pose that there is one compute-bound process that runs for 1 sec at 2 time and
many 1/O0-bound processes that use little CPU time but each have (o perform 1000
disk reads to complete. The compute-bound process runs for | sec, then it reads a
disk block. All the IO processes now run and start disk reads. When the
compute-bound process gets its disk biock. it runs tor another 1 sec, followed by
all the [/O-bound processes in quick succession.

The net result is that each ¥O-bound process gets to read 1 block per second
and will take 1000 sec to finish, With a scheduling algorithm that preempted the
compute-bound process every 10 msec, the I/O-bound processes would finish in

10 sec instead of 1000 sec, and without slowing down the compute-bound process
very much,

Shortest Job First

Now let us look at another nonpreemptive batch algorithm that assumes the
run times are known in advance. In an insurance company, for example, people
can predict quite accurately how long it will take to run a batch of 1000 claims.
since similar work is done every day. When several equally important jobs are
sitting in the input queue waiting to be started, the scheduler picks the shortest
job first. Look at Fig. 2-39. Here we find four jobs A, B, C, and D with run times
of 8, 4. 4, and 4 minutes, tespectively. By running them in that order. the
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turnaround time for A i1s 8 minutes., for £ 15 12 minutes, for € is 16 minutes, and
for D 15 20 minutes for an average of 14 minutes.

g 4 4 4 4 4 | B
A B C D B G D A
{a} (b)

Figure 2-39. An cxample of shortest job firse scheduling. (ay Running four jobs
tn the original order. (by Running them in shortest job first order.

Now let us consider runming these four jobs using shortest job first, as shown
in Fig. 2-3%b). The turnaround times are now 4, &, 12, and 20 minutes for an
average of 11 minwes. Shortest job first is provably optimal. Consider the case
of four jobs, with run times of a. b, ¢, and d, respectively. The first job finishes at
time a. the second finishes at time a + 4. and so on. The mean turnaround time is
{dat + 36 + 2¢ +d¥/4. N is clear that ¢ contributes more to the average than the
other times. so it should be the shortest job, with b next. then ¢, and finally d as
the longest as it affects only its own turnaround time. The same argument applies
equatly well to any pumber of jobs.

It is worth pointing out that shortest job first is only optimal when all the jobs
are available simultaneously. As a counterexampic, consider five jobs. A through
E, with run times of 2, 4, |, 1, and 1. respectively. Their arrival times are 0, 0, 3,
3. and 3. Initially, only A or B can be chosen. since the other three Jobs have not
arrived yet. Using shonest job first we will run the jobs in the order A, B, C. D, E,
for an average wait of 4.6. However, running them in the order B. C. £, E. A has
an average wait of 4.4,

Shertest Remaining Time Next

A preemptive version of shortest job first is shortest remaining time nexi,
With this algorithm, the scheduler always chooses the process whose remaining
run time is the shortest. Again here. the run time has to be Known in advance.
When a new job arrives. its total time is compared 1o the current process’ remain-
ng time. If the new job needs less time to finish than the current process, the
current process is suspended and the new job started. This scheme ajlows new
short jobs to gel good service.

Three-Level Scheduling

- From a certain perspeciive, batch systems aliow scheduling at threc different
levels. as illustrated in Fig, 2-40. As Jobs arrive at the system, they are mitially
placed in an input queue stored on the disk. The admission scheduler decides
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which jobs to admit to the system. The others are kept in l:h'u: input queuc until
they are selected. A typical algorithm for admission control might be to look for a
mix of compute-bound jobs and [/O-bound jobs. Alternatively. short jobs Icoy]id
be admitted quickly whereas longer jobs would have to wait. The admaission
scheduler is free to hold some jobs in the input queue and admit jobs that arrive
later if it so chooses,

Arriving

ol Input OCCQO0O0
4, queue
Mai
o [IIoloeel ? Memory Q‘:ﬁ

Disk

Admisslon Mamory
schedular scheduler

Figure 2-48, Thirce-level scheduling.

Once a job has been admitted to the systein, & process can be created {or it
and it can contend for the CPU. However, it might well happen that the number
of processes is so targe that there is not encugh room for all of them in memory.
In that case. some of the processes have to be swapped out to disk. The second
level of scheduling is deciding which processes should be kept in memory and
which ones kept on disk. We will call this schieduler the memory scheduler,
sinice it determines which processes are kept in memory and which on the disk,

This decision has 1o be reviewed frequently to allow the processes on disk to
get some service. However, since bringing a process in from disk is expensive.
the review probably should not happen more ofien than once per second, mavbe
less often. I the contents of main memory are shuftled wo often, a large amount
of disk bandwidth will be wasted, slowing down file 1/O.

To optimize system performance as a whole, the memory scheduler might
want (o carefully decide how many processes it wants in memory, called the
degree of multipregramming, and what kind of processes. I it has information
about which processes are compute bound and which are /O bound, it can try to
keep a mix of these process types in memory. As a very crude approximation. if a
certatn class of process computes about 20% of the time, keeping five of them
around is roughly the right number to keep the CPU busy. We will iook at a
slightly better multiprogramming modetl in Chap. 4. :
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To make its decisions. the memeory scheduler periodically reviews each proc-
ess on disk to decide whether or not to bring it inte memory. Among the criteria
that 1t can use to make 1ts decision arc the following ones:

1. How long has it been since the process was swapped in or out”
2. How much CPU time has the process had recently?
3. How big is the process? (Small ones do not get in the way.)

4. How important is the process?

The third level of scheduling is actually picking one of the ready processes in
maln memory to run next. Often this is called the CPU scheduler and is the one
people usually mean when they talk about the *‘scheduler.” Any suilable algo-
rithm can be used here. either preemptive or nonpreemptive. These include the
ones described above as well as a number of algorithms to be described in the
next section.

2.5.3 Scheduling in Interactive Systems

We will now look at some algorithms that can be used in interactive Systems.
All of these can also be used as the CPU scheduler in batch systems as well
While ihree-fevel scheduling is not possible here, two-level scheduling (memory

scheduler and CPU scheduler) is possible and common. Below we will focus on
the CPU scheduler,

Round-Robin Scheduling

Now let us look at some specific scheduling aigorithms. One of the oldest,
simplest, fairest, and most widely used algorithms is round robin. Each process
is assigned a time interval, called its quantum. which it is allowed 16 run. If the
process is still running at the end of the quantum, the CPU is preempted and given
to another process. If the process has blocked or finished before the quantum has
elapsed, the CPU switching is done when the process blocks. of course. Round
robin is easy to implement. All the scheduler needs to do 1s maintain a list of
runnable processes, as shown in Fig. 2-41(a). When the Process uses up its gquan-
tum, it is put on the end of the list, as shown in Fig. 2-41(h).

The only interesting issue with round robin is the length of the quantum.
Switching from one process to another requires a certain amount of time for doing
the administration—saving and loading registers and memory maps. updating var-
icus tables and lists, flushing and reloading the memory cache. etc. Suppose thas
this process switch or context switch. as it is sometimes called, takes t msec.
including switching memory maps, flushing and reioading the cache, etc. Also
suppose that the quantem is set at 4 msec. With these parameters, after doing 4
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Current ‘Neaxt Current
process process procis\s
B F D G A F ] £ A B

ia} {b}

Figure 2-41. Rouynd-robhin scheduling. ta) The list of runnable processes. (b)
The list of runnable processes after B uses up 1ts quantun,

msec of useful work, the CPU will have to spend | msec on process switching.
Twenty percent of the CPU time will be wasied on administrative overhead.
Clearly this is too much.

To improve the CPU efficiency, we could set the quantum to, say, 100 msec.
Now the wasted time 15 only | percent. But constder what happens on a timeshar-
ing system if ten interactive users hit the carriage return key at roughly the same
time. Ten processes will be put on the list of runnable processes. f the CPU is
idle, the first one will start immediately, the second one may not start until 100
msec later, and so on. The unlucky last one may have to wait 1 sec before getting
a chance, assurning all the others use their full quanta. Most users will perceive a
1-sec response to a short command as sluggish

Another factor is that if the quantum is ser longer than the mean CPU burst,
preemption wiill rarely happen. Instead, most processes will perform a blocking
operation before the quantum runs out, causing a process switch. Eliminating
preemption improves performance because process switches then only happen
when they are logically necessary. that is, when a process blocks and cannot con-
tinue.

The conclusion can be formulated as foilows: setting the quantum too short
capses t00 many process switches and lowers the CPU efficiency, but setting it
too long may cause poor response to short interactive requests. A quantum
around 20-30 msec is often a reasonable compromise.

Priority Scheduling

Round robin scheduling makes the unplicit assumption that all processes are
- equally important. Freguentty, the people who own and operate multiuser com-
puters have different ideas on that subject. At a university, the pecking order may
be deans first, then professors. secretaries, janitors, and finally students. The need
to take external factors into account leads to priority scheduling. The basic idea
is straightforward: each process is assigned a priority, and the runnable process
with the highest priority is allowed to run.

Even on a PC with a single owner, there may be multiple processes, some
more important than others. For example, 2 daemon process sending electroniv
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mail in the background should be assigned a lower priority than a process display-
ing 4 video film on the screen in real time. | | .

To prevent high-priority processes from running indefimitely, the s;hedgicr
may decrease the prionty of the currently runnmg process at each clock tick (}.c.,
al @ach clock interrupt). If this action causes its priority to drop below that of the
next highest process, a process switch oceurs, Abternatively, each process may be
assigned a maximnum time quantum that it 15 allowed to run. When this quantum
15 used up, the next highest priority process is given a chance to run.

Priorities can be assigned 10, processes statically or dynamically. On u miti-
tary compuler, processes started by generals might begin at priority |00, processes
started by colonels at 90, majors at 80, captains at 70, licutenants at 60. and so on.
Altemnatively, at a commercial computer center, high-priority jobs might cost 100
dollars an hour, medium priority 75 dollars an hour, and low priority 50 doliars. an
hour. The UNIX system has a vommand, nice, which allows 3 user to valuntarily
redoce the priority of his process, in order to be nice to the other users. Nobody
SVer uses it

Prionities can also be assigned dynamically by the system 1o achieve certain
system. goals. For example, some processes are highly /O bound and spend most
of their time waiting for /0. to complete. Whenever such a process wants the
CPU; it should be given the CPU immediately,. to let it start its next O reguest,
which can then proceed in parallel with. another process actually computing.
Making the I/O-bound. process wait a long time for the CPU will just mean having
1t around occupying memory for an unnecessurtly long time. A simple algoriilnn
for giving good service to /O-bound processes is to set the prority. to i/f, where
is.the. fraction of the last quantum that a process used. A process that used only 1
msec of its 50 msec quantum would get priority 50, while a process that ran 25
msec before blocking would get priority 2. and a process that used the whole
quantum would get priority |,

[t is often convenient to group processes inio priority classes and use priority
scheduling among. the ciasses but round-robin scheduling within each class. Fig-
ure 2-42 shows a systerm with four priority clusses. The scheduling aigorithm is as
follows: as long as there are runnable processes in priortty class 4, just run each
one for one quantum, round-robin fashion. and never bother with lower priority
classes. If priority class 4 is empty. then run the class 3 processes roond robin, it
classes 4 and 3 are both empty, then run class 2 round robin, and so on. It priori-
ties are not adjusted occasionally. lower priority classes may ail starve to death.

Multiple Queues

One of the earliest priority schedulers was in CTSS (Corbaté et al, 1962,
CTSS had the problem that process switching was very slow because the 7094
could hold only one pracess in memory. Each switch meant swapping the current
pracess 1o disk and reading in a new one from disk. The CTSS designers quickly
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Queue Runable processes
headars . — -

- b

F‘riﬂriry 4 . : : (Highest priority)

Prigrity 3

Priority 2

Prianty 1 {Lowest priority)

Figure 2-42. A scheduling algorithm with four privrity classes,

realized thid it was more efficient o give CPU-bound. processes & large quantam
once tn a white, rather than giving them.small quanta frequently: (to reduce swap-
ping). On the other hand, giving all processes a large quantum would mean poor
response time, as we have already seen. Their sofution was to set up prionty
classes. FProcesses In the bighest elass were: run for one gquantum. Processes in
the nexi.highest class: were run for two guanta. Procasses in the next class were
run fot fourn.quanta; and. so en. Whenever a process used up all the gquanta allo-
eatad [o.at, it was movedi down one class. .

As. an example, consider a proepss . that needed to compute continuously for
160 quanta. [t would initially: be. givén one guantum,: then swapped. vut, Next
time it would get two quania before beimg swapped out.  On succeeding runs it
would get 4, &, 16, 32, and 64 quantg, although it would have used only 37 of the
final 64 quanta to compleie its work, Only 7 swaps would be needed (mcluding
the indtial load) mstead of 100 with a pure round-robin algonithm. Furthermore. as

-thre process sando deeper and deeper inte the priority queues, it would be ran less
and less frequently, saving the CPU for shorl, inileractive processcs.

The following policy was adopted to prevent a process that needed to run for a
long time when it first siarted but became interactive later, from being punished
forever. Whenever a carmage return was typed at a terminal. the process belong-
ing to that ierminal was moved to the highest priority class, on the assumption that
it was aboul to become interactive. One fine day. some user with a heavily CPU-
bound process discovercd that just sitting at the terminal and typing carriage
refurns at random every few seconds did wonders for his response time. He told
all his friends. Moral of the story: geuing it right in practice is much harder than
getting 1t right in principle.

Many other algorithms have been used for assigning processes to priority
classes. For example, the influential XDS 940 system {l.ampson. 1968). built at
Berkeley, had four priority classes, called terminal, I/Q, short quantum. and long
quantum. When a process that was waiting for terminal input was finally awak-
ened, it went into the highest priority class (terminal). When a process walting for
a disk block hecame ready, it went into the second class. When a process was stil
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running when its quantum ran out, it was initially placed in the third class. Hc:w-
ever, if a process used up its quantum too many times in a row without blocking
for terminal or other VO, it was moved down to the bottom queue. Many other
systems use something similar to favor interactive users and processes over back-
ground ones.

Shortest Process Next

Because shortest job first always produces the minimum average response
time for batch systems, it would be nice if it could be used for interactive
processes as well. To a certain extent, it can be. Interactive processes generally
follow the pattern of wait for command. execute command, wait for command,
execute command, and se on  If we regard the execution of each command as u
separate “job,” then we could minimize overall response time by running the
shortest one first. The onlv problem is figuring out which of the currentlty run-
nable processes is the shortest one.

One approach is to make estimates based on past behavior and run the process
with the shortest estimated rupning time. Suppose that the estimated time per
command for some terminal is 7. Now SUpPOSE ts next run is measured to be
T\. We conld update our estimate by taking a weighted sum of these two
numbers, that is, aTy + {1 — a)T ;. Through the choice of @ we can decide to have
the estimation process forget old runs quickly. or remember them for a long time.
With a = 1/2, we get successive estimates of

Too To/24T\/2, To/A+T\/4+T2/2, Ty/8$+T /84 Told+T1/2

_After three new runs, the weight of Ty in the new estimate has dropped to 1/8.

The technique of estimating the next value in a series by taking the weighted
average of the current measured value and the previous estimate is sometimes
called aging. It is applicable to many situations where a prediction must be made
based on previous values. Aging is especially easy to implement when a = 1/2.
All that is needed is to add the new vatue to the current estimate and divide the
sum by 2 (by shifting it right 1 bit).

Guaranteed Scheduling

A completely ditferent approuach to scheduling is to make real promises to the
users about performance and then live Up 10 them. One promise that is realistic to
make and easy to live up to is this: If there are 1 users logged in while you are
working, you will receive about 1/1 of the CPU power. Similarly, on a single-
user system with n processes running. all things being equal. each one should ger
1/r of the CPU cycles.

To make good on this promise, the system must kKeep track of how much CPU
each process has had since its creation. It then computes the amount of CPU each
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one Is entitled to, namely the time since creation divided by #. Since the amount
of CPU time each process has actwaltly had is also known, it 1§ straightforward to
compute the ratio of actual CPU time consumed to CPU time entitled. A ratio of
0.5 means that a process has only had half of what it shoutd have had, and a ratio
of 2.0 means that a process has had twice as much as it was entitled 10, The algo-
rithm is then to run the process with the lowest ratio until its ratic has moved
above its closest competifor.

Lottery Scheduling

Whiie making promises to the users and then living up to them is a fine idea,
it iy difficult to impltement. However, another algorithm can be used to give simi-
larly predictable results with a much simpler implementation. It is calied lottery
scheduling (Waldspurger and Weihl, 1994).

The basic idea is to give processes lottery tickets for various sysiem
resources, such as CPU time. Whenever a scheduling decision has to be made. a
lottery ticket is chosen at random. and the process holding that ticket gets the
resource. When applied to CPU scheduling, the system might hold a lottery 50
times a second, with each winner getting 20 msec of CPU time as a prize.

To paraphrase George Orwell: “All processes are equal, but some processes
are more equal.” More important processes can be given extra tickets, to increase
their odds of winning. If there are 100 tickets outstanding, and one process holds
20 of them, it will have a 20 percent chance of winning each lottery. In the long
run, it jﬁ?]l get about 20 percent of the CPU. In contrast to a priority scheduler,
where it is very hard to state what Ewmp anrinrity nf AN artnally mpewes ]‘!ﬂg‘ 1o,




48 PROCESSES AND THREADS CHAP. 2

Fair-Share Scheduling

So far we have assumeéd that each process is scheduled on its own, without
regard to who its owner is. As a result, if user | starts up 9 processes and user 2
siarls vp 1 process, with round robin or equal priorities, user | will get Y0% of the
CPU and user 2 wili get ondy 10% of it.

To prevent this situation, some systems take into aocount who owas a process
betore scheduling it. In this model. each user is allocated some fraction of the
CPU and the scheduler picks processes in such a way as to enforee it. Thus if two
users have each been promised 50% of the CPU, they will each get that. no matter
how many processes they have in existence.

As an example, consider a systemn with two users, each of which has becn
prontised 50% of the CPU. User | has four processes, A. B, C, and 0. and user 2
has only j proeess. E. If round-robin scheduling is used, a possible scheduling
sequence that meets all the constraints is this one:

AEBECEDEAEBECEDE..

On the other hand. if user t is entitled to twice as much CPU time as user 2, we
might get

ABECDEABECDE ..

Numerous other possibilities exist, of course, and can be exploited, depending om
what the notion of fuirness is.

2.5.4 Scheduling in Real-Time Systems

A real-time sysiem is ope in which time plays an essential rolc. Typically,
one or more physical devices external ta the computer generate stimuli, and the
computer must react appropriaiely to them within a fixed amount of time. For
exampie. the computer in a compact disc player gets the bits as they come off the
drive and must convert them into mosic within a very tight time interval. If the
caiculation takes too long, the music wili sound peculiar. Other real-fime Systems
are pattent monitoring in a hospital intensive-care unit., the autopilot in an aircrafl,
and robot control in an automated factory. In ali these cases. having the right
answer but having it too late is often just as had as not having it at ail.

Real-time systems are generally categorized as hard real time, meanin r there
are ubsolute deadlines that must be met, or eise. and soft real time. meaning that
misstng an occasional deadline is undesirable, but nevertheless tolerable. in both
cases, real-time behavior is achieved by dividing the program into a number of
processes, each of whose behavior is predictable and known in advance. These
processes are generally short lived and car run to completion m well under a
second. When an external event is detected, it is the Job of the scheduler to
schedule the processes in such a way that all deadlines are met,
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The events that a real-ime sysiem may have to respond 1o can be furt?wr
categorized uas periodic (occurring at regular intervals) or a!)er.‘iﬂdic {occurring
unpredictably). A system may have 1o respond o multiple per_mdu.j evert streams.
Depending on how much time each event regquires for processing, if My nOt even
be possible to handle them all. For exampte. if there are m periodic events and
cevent ¢ occurs with period P; and requires C; seconds of CPU time to handie each
cvenl, then the foad can only be handled if

A real-time system that meets this criteria is said to be schedulable.

As an example, consider a soft real-time system with three. pericdic events,
with periods of 100, 200, and 500 msec, respectively.  1f these events require 50,
30, and 100 msec of CPU time per event, respectively. the system is schedulable
because 0.5 + 0.15 + 0.2 < 1. If 4 fourth event with a period of § sec is added, the
system will remain schedulable as Jong as this event does not need more than 150
msec of CPU time per evens. Implicit in this calculation is the assumption thai the
context-switching overhead is so small that it can be ignored.

Real-time scheduling algorithms can be static or dynamic. The former make
their scheduling decisions before the sysiem starts runmng, The latter make their
scheduling decisions at run time. Static scheduling oaly works when there is per-
fect information available in advance about the work needed io be done ang the
deadlines that bave to be met. Dynamic scheduling utgorithms do not have these
restrictions. We will defer our study of specific algorithms until we treat real-
ttme multimedia systems in Chap. 7.

2.5.5 Policy versus Mechanism

Up until now, we have tacitly assumed that all the processes in the system

lQue foudif erent neepy grglpug thg apae— ot ety te—cdTiei &_“ﬁ.-, s:
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priority scheduling aigorithm but provides a system call by which a process can
set (and change) the priorinies of its children. In this way the parent can control in
detait how its children are scheduled, even though it itself does not do the
scheduling. Here the mechanism is in the kernel but policy is set by a user proc-
€8s,

2.5.6 Thread Scheduling

When several processes each have multiple threads. we have two levels of
parailelism present: processes and threads. Scheduling in such systerns differs
substantially depending on whether user-leve! threads or kemnel-level threads {or
both) are supported.,

Let us consider user-level threads first. Since the kernel is not aware of the
existence of threads, it operates as it always does, picking a process, say, A. and
giving A control for its quantum. The thread schediter inside A decides which
thread to run, say AZ. Since there are no clock interrupts to multiprogram threads.
this thread may continue running as long as it wants to. If it uses up the process’
entire quantum, the kernel will select another process 10 run.

When the process A finally runs again, thread A7 will resume running. It will
continue to consume all of A’s time untii it is finished, However, its antisoctal
behavior will not affect other processes. They will get whatever the scheduler
considers their appropriate share, no matter what is going on inside process A.

Now consider the case that A’s threads have relatively little work to do per
CPU burst, for example, 5 msec of work within » 50-msec quantum. Conse-
quently, each one runs for a little while, then yields the CPU back to the thread
scheduler. This might lead to the sequence A/, A2, A3. Af. A2, A3 Al A2 A3,
A1, before the kernel switches to process B. This situation is illustrated in Fig. 2-
43(a).

The scheduling algorithm used by the run-time system can be any of the ones
described above. In practice, round-robin scheduling and priority scheduling are
most common. The only constraint is the absence of a clock to interrupt a thread
that has run too long.

Now consider the situation with kernel-leve] threads. Here the kernel picks a
particular thread to run. It does not have to take into account which process the
thread belongs to, but it can if it wants to. The thread s given a quantum and is
forceably suspended if it exceeds the quanturn. With a 5(0-msec quantum but
threads that block after 5§ msec, the thread order for some period of 30 msec might
be Al. Bl, A2, B2, A3, B3, something not possible with these parameters and
user-level threads. This situation is partially depicted in Fig. 2-43(b}.

A major difference between user-level threads and kernel-level threads is the
performance. Doing a thread switch with user-level threads takes a handful of
machine instructions. With kernel-level threads it requires a full context switch,
changing the memory map, and invalidating the cache, which is several orders of
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Process A Frocess B Process A Process B
Order in which

threads run
2. Runtime
systamn
picks a —
thread
L— 1. Kernel picks a process 1 Kerngl picks a thread E
Poasibiea: Al AR AZ Al AZ A3 FPosaibler AT, A2, A3, A1, A2, A2
Not possibke: At B1, A2 B2, A3, B3 Also possible: A1, Bt, A2, B2, A3, B3

{a) ()

Figure 2-43. (a) Possible scheduling of wser-level threads with a 5G-msec proc-
ess quanturn and threads that run 5 msec per CPU burst. {b) Possible scheduling
of kernel-ievel threads wath the same characteristics as (a).

magnitude slower. On the other hand, with kernel-level threads, having a thread
block on 1/0 does not suspend the entire process as it does with user-level threads.

Since the kernel knows that switching from a thread in process A to a thread
in process B is more expensive that running a second thread in process 4 (due to
having to change the memory map and having the memory cache spoiled), it can
take this information into account when making a decision. For example, given
two threads that are otherwise equally important, with one of them belonging to
the same process as a thread that just blocked and one belomnging to a different
process, preference could be given to the former.

Anocther important factor is that uvser-level threads can employ an
application-specific thread schedaler. Consider, for example, the Web server of
Fig. 2-10. Suppose that a worker thread has just blocked and the dispatcher thread
and two worker threads are ready. Who should run next? The run-time system,
knowing what ali the threads do, can eusily pick the dispatcher to run next, so it
can start another worker running. This strategy maximizes the amount of paraiici-
i1sm 1z an envirenment where workers frequently block on disk I/O. With kernel-
level threads, the kernel would never know what cach thread did (although they
could be assigned different priorities). In general, however, application-specific
thread schedulers can tune an application better than the kernel can.

2.6 RESEARCH ON PROCESSES AND THREADS

In Chap. 1. we looked at some of the current research in operating system
structure. In this and subsequem chapters we will ook at more narrowly focused
research, starting with processes. As will become clear in time, some subjects are
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much more settled than others. Most of the rescarch tends to be on the new
topics. rather than ones that have been around for d«eéades: _

The concept of a process is an example of something that is well ﬂetﬂf:d.
Almiosl gvery system ‘has some notien of @ Procass as a conbiner for grouping
together refaled resources such as an address space, thieads,: ppen files, protection
permissions, ate. Different systems do the grotuping sfightly.differently, bql.ihcsc
are jus enginepring differences. The basic itden isinot vary controversiad any
more and there ix little new research on the sulfect. -

Threads are a newer id¢d than processes, so there is still soma research going

an &out them, . Hauser e al. (1993) looked at how geal programs actually use
threads and came. up.with' 10 different paradigms _for thread uvsage. Thread
schethuhng. (both.uniprecessdr and multiprocesseris stifl a topic nexr and dear (o
the hear-of “ome-tesearchers (Blumofe and Léisetson, 1994: Buchanan :und
Chien, 1997; ‘@orbaldn ¢t al., 2000; Chandra et al.. 2000: Duda and Cherilon,
1999: Ford-and Sukarlal 1996 and Petrouret: ol FO99Y. - However, few actual SYSs-
tem designers-are watking around all day wringing their hands for lack of a decent
thread scheduling algorithin, so it appears’ this type of research is more
roseriThepquusio thdm denandspldh .
- Ciosaby velated dt dheosds! is-thead. sy sehironization: and mutal exclusion. In
e kG705 niid 26 980w thabsubiedt was mindd’ for all it ‘was worth. so there-is not
miuzii oubrent Yogkno bt fubfucivandemisat there is tends 10 be focuses an perfor-
mamde (8.g: fiediks, Y99B8Ktomg o datddting synchrenization TOrs {(Savage- et
ab,, 9971y or madiflying. olid doscapis in new ways (Tdi and Carver, 1996; Trono,
06N : Foreall yoambwh POSOX  bonfonm g threads packages -are still being produced:
anchogporoed:-on (ifidny, 19941 andiMitler, 1999).

2.7 SUMMARY"

Ta-hide the effécts of interrupts, operating systems provide a concepiual
motel. consisting -of sequential processes running in parallel. Processes can be
created and-fermvinated dynamically. Each process has its own address space.

For some applicatioms it is useful 1o have multiple threads of control within a
single: process. . These threads are scheduled independently and each one has its
OWn stack, but alithe. threads in a process share a common address space.
Threads can be implemented in user space or in the kernel.

Processes can communicate with each other usINg interprocess communica-
tien primitives, such as semaphores. monitors, or messages. These primitives are
used to ensure that no two processes are ever in their critical regions at the same
tme, & situation that leads to chaos. A process can be running, runnabie. or
blecked andcanichange state when it or another process executes one of the inter-
Process comwmication primitives. Interthread communication is similar,
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Intarprocess communication primitives can be used to solve such p_rublf:ma as
the produccr-consumer. dining philosophers, reader-writer. and sleeping barber.
Even with these primitaves, care has to be taken to avoid errors am:f dea'dim'ks, ‘

Many scheduling algorithms are known. Some of these are primarily used for
batch systems. such as shortest job first, Others are common in both batch sys-
tems and interactive systems. These include round robin, priosity scheduling.
multilevel queues. guaranteed scheduling, lottery scheduling. and fair-share
scheduling.  Some sysiems make a clean separation between the scheduling
mecchanism and the scheduling poticy, which allows users to have control of the
scheduling algorithm.

PROBLEMS

1. In Fig. 2-2, three process states are shown. In theory. with three states. there could be
sIX fransuiong, two out of each state, However. only four transitions are shown. Are
there any circumslances in which either or both of the missing transitions might
oceur?

2. Suppose (hat you were to design an advanced computer architecture that did process
switching in hardware, instead of having interrupts. What information would the CPU
need? Describe how the hardware process swilching might work.

3. On.alt corrept compulers, at least part of the interrupt handlers are writien in issemly
language. Why?

4. When an interrupt or o system call transfers control o the operating system, a kernel
stuck area separate from the stack of the interrupted process s generally used. Why™

5. Tn the text it was stated that the model of Fig. 2-6(a) was not suited 1o a file server
using a cache in memory. Why not? Could each process have its own cache?

6. In Fig. 2.7 the register set is listed as a per-thread rather than a per-process item.
Why? After ull, the machine has only one set of FCEislers,

7. If a moltithreaded process forks, a problem occurs if the child gets copies of all the
parent’s threads. Suppose that one of the original threads was waiting for kevboard
input. Now two threads arc waiting for keyboard input. one in each process. Docs
this problem ever occur in single-threaded processes’?

8. In Fig. 2-10, a multithreaded Web server is shown. If the only way 1o read from a file
is the norma) blocking read system call, do you think user-level threads or kernel-level
threads are being uscd lor the Web server? Why?

9. Why would a thread ever voluntanly give up the CPU by catling thread _ vield? After
all, since there is no periodic clock mnterrupt. it may never get the CPU back.

10. Can 4 thread ever be precmpied by a clock interrupt? If so, under what cir-
cumstances”? If not, why not?
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11.

12,

13.

14,

I5.

16.

17.

18.
19.

20,

21.

22,

In this problem you are to compare reading u file using a single-threudjed file server
and a multithreaded server. It takes 15 msec (o get a request for work. dispatch it, and
do the rest of the necessary processing, assuming that the data needed are in the hlock
cache. If a disk operation is needed, as 15 the case one-third of the time, an additional
75 msec is required, during which Lime the thread sleeps. How many requests/sec can
the server handle if it is single threaded? 1f it is multithreaded?

In the rext, we described @ multithreaded Web server, showing why it is better than a
single-threaded server and a finite-state machine server. Are there any circumstances
n which a single-threaded server might be better? Give an example.

In the discussion on global variables in threads, we used a procedure create _global to
allocatc storage for a pointer to the variable, rather than the variable itself. [s this
essential, or could the procedures work with the values themselves Just 1% well?

Consider a system in which thrcads are implemented entirely in user space, with the
run-time system getting a clock interrupi once a second. Suppose that a clock inter-
rupl occurs while some thread is executing in the run-time system. What problem
might occur? Can you suggest a way to solve it?

Suppose that an operating system does not have anything like the select system call to
see 1n advance if it is safe to read from a file, pipe. or device, but it does allow alarm
clocks 1o be set that interrupt blocked system calls. s it possible to implement a
threads package in user space under these conditions? Discuss,

Can the priority inversion problem discussed in Sec. 2 3.4 happen with user-level
threads? Why or why not?

In a system with threads, is there one stack per thread or one stack per process when
user-level threads are used? What about when kernel-level threads are used? Explain.

What is a race condition?

When a computer is being devetoped, it is usually first simulated by a program that
funs one instruction at a time. Even multiprocessors are simulated strictly sequentially

tike this. Ts it possible for a race condition o occur when there are no simultaneous
events like this?

Does the busy waiting solution using the worn variable (Fig. 2-20) work whes the two
processes are running on a shared-memory multiprocessor, that is. two CPUs. sharing
a common memory?

Does Peterson’s solution to the mutual exclusion problem shown in Fig. 2-2( work
when process scheduling is preemptive? How aboul when it is nenpreemptive?

Consider a computer that does not have a TSL mstruction but does have an instruction
to swap the contents of a register and a memory word in a single indivisible action.
Can that be used o wrile a routine enter_regien such as the one found in Fig. 2.227

23. Give a sketch of how an opcrating syslem that can disable interrupts could implement

sermaphores,

- Show how counting semaphores (i.e., semaphores that can hold an arbitrary value) cun

be implemented using only binary semaphores and ordinary machine instructions,
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25,

26.

27.

28.

29,

31.

32,

3.

M.

It a systemn has only two processes, does it make sense to use a barrier to synchronize
them”? Why or why not?

In Sec. 2.3.4, a situation with a high-priority process, H, and a low-priorily process, L
wus Jdescribed, which led to H looping forever. Does the same problem occur if
round-rebin scheduhing is used instead of priority scheduling? Discuss.

Can two threads in the same process synchronize using a kernel semaphore if the
threads are implemented by the kemel? What if they are implemented in user space?
Assume that no threads in any other processes have access to the semaphore. Discuss
YOUr ANSWELS.

Synchronizalion within monilors uses condition variables and two special operalions,
wait and signal. A more gencral form of synchronization wouild be to have a single
primifive, waituntil, that had an arbitrary Boolean predicaie as parameter. Thus, one
could say, for example,

waituntl x <0 Or v + 7 <

The signai primitive would no longer be needed. This scheme is clearly more general
than that of Hoarc or Brinch Hansen, bul it is not usecd, Why not? Hinr: Think aboul
the implementation.

A tast food restaurant hus four kinds of employees: {1) order takers, who take custo-
mers” orders: (2) cooks, who prepure the food: {3) packaging specialists, who stuff the
food into bags; and (4) cashiers, who give the bags to customers and take their money.
Each employee can be regarded as a cormmunicating sequential process. What form of
interprocess communication do they use? Relate this model 1o processes in UNEX.

Suppose that we have a message-passing sysiem using mailboxes. When sending to a
full mailbux or trying to reccive from an cmpty one, a process does not block.
Instead. it gets an error code back. The process responds to the error code by just try-
ing again, over and over, until it succeeds. Does this scheme lead to race conditions?

In the solution 10 the dining philosophers problem (Fig. 2-20), why is the state variable
set 10 HUNGRY in the procedure rake _forks?

Consider the procedure pret_forks in Fig. 2-2G. Suppose that the variable state(i] was
set to THINKING after the two calls 1o fest. rather than before. How would this
change atfect the solution?

The readers and writers problem can be formulated in severul ways with regard o
which category of processes can be started when. Carcfully describe three different
variations of the problem, each one favoring (or not favoring) some category of
processes.  For each variation, specify what happens when a reader or a writer
becomes ready to access the datahase, and what happens when a process is finished
using the database.

The CDC 66(0) computers could handie up ta 10 /O processes simultaneously using
an mteresting form of round-robin scheduling called processor sharing. A process
switch occurred afier each instruction, so instruction | came from process |, instruc-
tion 2 came from process 2, elc. The process switching was done by special hardware,
and the overhead was zero. If a process needed 7 sec to complete in the absence of



156 PROCESSHES AND THREADS CHAP. 2

35.

36.

37.

29,

41.

42,

43

competition, how much ume would it need  processor shanng was used with
processes’?

Round-robin schedulers. normally maintaim a list of atl runnable processes, with each
process occurring exactly omee i the Lisl. What would happen it g process oecurred
twice in the list? Can you think of any reasor for allowing this?

Can a measure of whether a proeess is ikely to be CPU bound or 1A bound be deter-
mined by analyzing soarce code? How can this be determined at run time?

In the section “When io Sehedule.” it wids mentioned that someties schediling could
be improved 1t an important process could piay a role in selecting the next process 1o
run when it blocks. Give a vituation where this coudd be used and explain how.

. Measurements of a cortain system have shown that the average process runs for a time

T before blocking on 170, A process switch requires a time 8. which iy effectively
wisted (overhead). For round-robin scheduling with guantum Q. give a formuia for
the CPU efficiency for cach of the following:

(a) (J=rco

(b) @=7
fctr¥<QP<T
=5
{c) O nearly O

Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X. 1n what
order should they be run to minimize averuge espose time? (Your answer will
depend on X}

Five batch jobs A through £, arrive at 3 computer center ak almost the same time.
They have estimated running times of 10, 6, 2, 4, and & minutes. Their {externally
determined) priotities are 3, 5. 2. 1. and 4, respectively. with 3 being the highest prior-
ity. For each of the tollowing scheduiing algorithins, determine the mean process tur-
naround time. Ignore process switching overhead.

(i)' Round robin.

(b) Priority scheduhing.

(¢} First-come. first-served (rua in arder 10, 6, 2. 4. 8},
{d} Shortesi job first.

For (a}, assume that the sysiem is multiprogrammed. and that each job gets its fair
share of the CPU. For (b) through (d} assumic that only one job at & time runs, until it
finishes. All jobs are completely CPU bound.

A process running on CTSS needs 30 quanta to complete. How many times muss it be
swapped i, including the very first time {hefore it has Tun at ally?

Can you think of a way to save the CTSS priority system (rom being fooled by ran-
dorm carriage returns”!

-. The aging algorithm with & = 1/2 is being used o predict run times. The previous four

runs, trom oldest to most receat, are 40, 20, 40, and 15 msee. What is the prediction
ol the next time?
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44.

45.
46.

47,

48.

49,
50.

31.
52.

53.

A goft real-time system has four periodic events with periods of 50, 100. 1[}{} andll‘i[}
msec each. Suppose that the four events require 35, 2{, 10, and X msec of CPU time,
respoctively. What is the Jargest value of x tor which the system 15 schedulable?

Explain why two-tevel scheduling is commonly used.

Consider a system in which 1t is desired to separate policy and mechanism for the
scheduling of kernel threads. Propose a means of achicving this goat.

Write a shell seript that produces a file of sequential numbers by reading the last
numher in the file, adding | w it, and then appending it to the file. Run one instance
ol the script in the background and one in the foreground, cach accessing the same
{ile. How long does 1t take before o race condition manifests itself? What is the oriti-
cal region? Modity the seript o prevent the race (hint: use

In file file.lock
Lo lock the data file).

Assume that you have an operating system that provides semaphores. Implement a
message system, Write the procedures for sending and TECCIVING Messages.

Solve the dining philosophers problem using monitors instead of semaphores,

Suppose that & sniversity wants to show ofl how politically correct it is by apptying
the U.S. Supreme Court’s “Separate bot cqual is inherently unequal™ doctone to
zender as well as race, ending jts long-standing practice of gender-segregated bath-
rooms eon campus. However, as a concession to tradition. it decrees that when a
waman is m a bathroom, other women may enter. but no men, and vice versy, A sign
with a sliding marker on the door of cach bathroom indicates which of threc possible
states s currently in:

* Empty
* Women present
* Men present

In your favorile programming language, write the following procedures:
WORIGR . WARIN T _ender, meh _wamls _to_ emter, weman _feaves, man_ leaves. You
may use whatever counters and synchronization techmiques you like.

Rewrite the program of Fig. 2-20 10 handle more than iwo processes,

Writc a producer-consumer problem that uses threads and shares a common buffer.
Howcver, do not use semaphores or any other synchronization primitives o guard the
shured data structures, Just let each thread access them when it wunts to. Use sleep
and wakeup to handle the full and empty conditions. See how long it tukes for a Faral
race condition to occur. For example, you might have the producer print & number
once in a while. Do not print more than one number every minute because the [/
could alfect the race conditions.

A process can be pul into a round-robin queuc more than once to give it a higher prior-
ity. Running multipie instances of program each working on a different part of a
data pool can have the same effect. First write o program that tests a list of numbers
tor primality. Then devise a method to allow multiple instances of the program to run
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at unce in such a way that no rwo tnstances of the program will work on the same
number. Can you in fact get through the list faster by running muldple copies of the
program” Note that your results will depend upon what else your computer 15 doing;
on a personal computer running only instances of this program you would not expect
an imprevement, but on a system with other processes, you should be able to grab 2
bigger share of the CPU this way.



DEADLOCKS

Computer systems are full of resources that can only be used by one process
at a time. Common examples include printers. tape drives. and slots in the
system’s intermal tables. Having two processes simultaneously writing to the
printer leads to gibberish. Having two processes using the same file system table
slot will invariably lead 10 a corrupted file system. Consequently. all operating
systerns have the ability 10 (temporarily) grant a process exclusive access to cer-
tain resources.

For many applications. a process needs exclusive access to not one resource,
but several. Suppose, for exampie, two processes each want to record a scanned
document on a CD. Process A requests permission to use the scanner and is
granied it. Process B 1s programmed differently and requests the CD recorder first
and is also granted it. Now A asks for the CD recorder. but the request is denied
until B refeases it. Unfortunately, instead of releasing the CD recorder B asks for
the scanner. At this point both processes are blocked and will remain so forever.
This situation is calied a deadlock.

Deadlocks can also occur across machines. For example, many offices have a
local area network with many computers connected to it. Often devices such as
scanners, CD recorders, printers, and tape drives are connected to the network as
shared resources, available to any user on any machine. I these devices can be
reserved remotely (i.e.. from the user's home machine), the same kind of dead-
locks can occur as described above. More complicated situstions can cause
deadlocks involving three, four, or more devices and users.

159
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Deadlocks can occur in a variety of situations besides requesting dedicated
KO devices. In a database system, for example, a program may have fo lock
several records 1t 1s using, to avoud race conditions. If process A locks record K7
and process B locks record R2, and then cach process tries to lock the other one’s
record, we also have a deadlock. Thus deadlocks can occur on hardware
resources or on software resources,

in this chapter, we will look at deadlocks more closely, see how they arise,
and study some ways of preventing or avoiding them. Although this material is
about deadlocks in the context of operating systems, they also occur in database
systems and many other contexts in computer science, so this material is aclually
applicable to a wide variety of multiprocess systems. A great deal has been writ-
ten about deadiocks. Two bibliographies on the subject have appeared in Operat-
ing Systems Review and should be consulted for references (Newton, 1979: and
Zobel, 1983). Although these bibliographies are old, most of the work on
deadlocks was done well before 1980, so they are still useful.

3.1 RESOQURCES

Deadlocks can occur when processes have been granied exclusive access o
devices, files, and so forth. To make the discussion of deadlocks as general as
possible, we wiil refer to the objects granted us resources. A resource can be a
hardware device (e.g., a tape drive} or a piece of information (c.g.. a locked
record in a database). A computer wili normally have many different resources
that can be acquired. For some resources, several identical instances may be
available, such as three tape drives. When several copies of a resource are avail-
able, any one of them can be used to satisty any request for the resource. In short,
4 resource is anything that can be used by only a single process at any instunt of
fime.

3.1.1 Preemptable and Nonpreemptable Resources

Resources come in two types: preemptable and nonprecinptable. A preempt-
able resource is one that can be taken away from the process owning it with no ill
effects. Memory is an example of a preemptable resource. Consider. for exam-
ple, a system with 32 MB of user memory., one printer, and two 32-MB processes
that each want to print something. Process A requests and gets the printer, then
starts 10 compuie the values to print. Before it has finished with the computation,
it exceeds 1ts time quantum and is swapped out.

Process B now runs and tries, unsuccessfully, to acquire the printer. Poten-
tially. we now have a deadlock situation, because A has the printer and 8 has the
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memory, and neither can proceed without the resource held by the other. _ Fm."-
tunately, 1t 15 possible to preempt {take away) the memory from 8 by swapmng it
out and swapping A in. Now A can run, do ns printing, and then release the
printer. No deadlock occurs.

A nonpreemptable resource, in contrast, is one that cannot be taken away
from its current owner without causing the computation to fail. If a process has
begun to burn a CD-ROM, suddenly taking the CD recorder away from it and giv-
ing 1t to another process will result in a garbled CD. CD recorders are not
preemptable at an arbilrary mement.

Inn general, deadlocks invelve nonpreemptable resources. Potential deadlocks
that involve preemptable resources can usually be resolved by reallocating
resources from one process to another. Thus our treatment will focus on non-
preemptable resources.

The sequence of events required to use a resource is given below in an ab-
stract form.

I. Request the resource.
2. Use the resource.
3. Release the resource.

If the resource is not available when it is requested, the requesting process iy
forced to wait. In some operating systems. the process 1S automatically blocked
when a resource request fails, and awakened when it becomes available. In other
systems, the request fails with an error code, and it is up to the calling process io
wail a littie while and try again.

A pracess whose resource request has just been denied will normally sit in a
tight loop requesting the resource, then sleeping, then trying again. Although this
process 1s not blocked. for all intents and purposes, it is as good as blocked,
because it cannot do any useful work. In our further treatment, we will assume
that when a process is denied a resource request, it is put to sleep.

The exact nature of requesting a rcsource is highly system dcpendent. In
Some systems, a request system cal! is provided to allow processes to explicitly
ask for resources. In others, the only resources that the operating system knows
about are special files that only one process can have open at a time. These are

opened by the usual open call. If the file is already in use. the caller is blocked
until its current-owner closes it.

3.1.2 Resource Acquisition

For seme kinds of resousces, such as records in a database system. it is up to
the user processes to mamage resolrce usage themselves. One possible way of
allowing user management of resources is 1o associate a semaphore with each
resource. These semaphores are all initialized to 1. Mutexes can be used equally
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well. The three steps listed above are then implemented as a down on the sema-
phore to acquire the resource, using the resource, and finally an up on the resource
to release it. These steps are shown in Fig. 3-1(a).

typedef int semaphore; typedef int semaphore;
semaphore resource  1; semaphore resource_1;
semaphore resource_ 2,

voigd process_A(void) { void process _A{void) {
down(&resource _1}: down(&resource . 1),
use_resource._1( ); down(&resource _.2);
up{&rasource 1); use_ both_resources( );
} up(&resource _2);

up(&resource_1};

(i) (b)

Figure 3-1. Using a semaphore 10 protect resources. {a) One resource. (b) Two resources,

Sometimes processes need two or more resources, They can be acquired
sequentially, as shown in Fig. 3-1(b). If more than two resources are needed. they
are just acquired one after another.

So far, so good. As long as only one process is involved, everything works
fine. Of course, with only une process. there is no need to formally acquire
resources, since there is no competition for them.,

Now let us consider a situation with two pracesses, A and B, and two
resources. Two scenarios are depicted in Fig. 3-2. In Fig. 3-2(a), both processes
ask for the resources in the same order. In Fig. 3-2(b), they ask for them in 2 dif-
ferent order. This difference may seem minor. but it is not,

In Fig. 3-2(a), one of the processes will acquire the first resource before the
other one. That process will then successfully acquire the second resource and do
its work. If the other process altempts to acquire resource ! before it has been
released, the other process will simply block until it becomes availabie.

In Fig. 3-2(b}, the situation is different. It might happen that one of the
processes acquires both resources and effectively blocks out the other process
until it is done. However, it might alse happen that process A acquires resource |
and process B acquires resource 2. Each one will now block when trying thc
acquire the other one. Neither process will ever run again. This situation is a
deadlock.

Here we see how what appears to be a minor difference in coding style
which resource to acquire first—turns out to make the difference between the pro-
gram working and thc program failing in a hard-to-detect way. Because
deadlocks can oceur so casily, a lot of research has gone into ways to deal them.
This chapter discusses deadlocks in detail and what can be done about themn,
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typedef int semaphore;

semaphore resource _1; semaphore resource_ 1;

semaphore resource_2; semaphore resource .. 2;

void process_A(void) { void process_A(void) {
down{&resource _1}; down{&resotirce _1};
down(&resource = 2); down({&resource 2);
use_both_resources( ); use_both_resources( );
up{&resource _2j; up{&resource ..2);
up{&resource _1); up(&resource _1);

] }

void process _B{void) { void process _B{void) {
down({&resource _1); down(&resource __2);
down(&resource _2); down{&resource _1};
use_both_resources( ); use_both _resources( );
up{&resource _2}, up{&resource _1);
up{&resource 1), up(&resource 2);

} }

fa) {h)

Figure 3-2. (1) Deadlock-free code. (b) Code with a potential deadlock.
3.2 INTRODUCTION TO DEADLOCKS

Deadlock can be defined formally as fotlows:

A set of processes is deadiocked If each process in the set iy waiting for an
event that only another process in the set can cause.

Because all the processes are watting, none of them will ever cause any of the
events that could wake up any of the other members of the set, and all the
processes continue to wait forever. For this model, we assume that processes
have only a single thread and that there are no interrupts possible to wake up a
blocked process. The no-interrupts condition is needed to prevent an otherwise
deadlocked process from being awakened by, say, an alarm. and then causing
events that release other processes in the set.

In most cases, the event that each process Is waiting for is the releasc of some
resource currently possessed by another member of the set. In other words, cach
merber of the set of deadlocked processes is waitin g tor a resource that is owned
by a deadlocked process. None of the processes can run, none of them can relcase
any resources, and none of them can be awakened. The number of processes and
the number and kind of resources possessed and requested are umimportant. This
result holds for any kind of resource, including both hardware and software,
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3.2.1 Conditions for Deadlock

Cotfman et al. (1971 showed that four conditions must hold for there 1o be a
deadtock:

1. Mutual exclusion condition. Each resource is etther currently as-
signed to exactly one process or is available.

2. Hold and wait condition. Processes currently holding resources
granted earhier can request new resources.

3. No preemption condition. Resources previously granted cannot be
forcibly taken away from a process. They must be explicitly
reteased by the process holding them.

4. Circular wait condition. There must be a circular chain of two or
more processes, each of which is waiting for a resource held by the
next member of the chain.

All four of these conditions must be present for a deadiock to occur. If one of
them is absent. no deadlock is possible.

It is worth noting that each condition relates to a policy that system can have
or not have. Can a given resource be assigned to more than one process at once?
Can a process hoid a resource and ask for another? Can resources be preempied?
Can circular waits exist? Later on we will see how dcadlocks can be attacked by
trying to negate some of these conditions.

3.2.2 Deadlock Modeling

Holt (1972) showed how these four conditions can be modeled using directed
graphs. The graphs have two kinds of nodes: processes. shown as circles, and
resources, shown as squares. An arc from a resource node {sguare) to a process
nede (circle) means that the mesource has previously becn requesied by, granted
to, and is curremily held by that process. In Fig. 3-3(a), resource R is currently
assigned to process A.

An arc from a process t0 a resource meuns thut the process 18 currently
blocked waiting for that resource: In Fig. 3-3(b). process 8 1s watting {or resource
8. In Fig. 3-3(c) we see a deadlock: process C 15 waiting for resonrce . which is
currenily held by process . Process D is not about to release resource T because
it is waiting for regource U, held by €. Both processes will wait forever. A cycle
in-the graph means that there is a deadiock invelving the processes and resources
- the cycle (assuming that there is one resource of each kind). In this example,
the cycle is C-T-p /-

Now let us look at an example of how resource graphs can be used. lmagine
that we have three: processes, A, 8, and C. and three. resources, K. 5. and 7, The
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S i

T 1]

: (5) S
fa) fbr) {ch

Figure 3-3. Resource aliocaton graphs, oy Holding a resource. (b} Reguesting
a resource. (o) Deadlock,

reguests and reieases of the three processes are given in Fig. 3-d{a)-{c). The
operating system s free to run any unblocked process at any instant, so it could
decide to run A until A {inished all its work, then run B 10 completion, and finally
run .

This ordering does not lead to any deadlocks {because there is no competition
tor resources) but it also has no parallelisin ac all. Tn addition to reguesting and
releasing resources, processes compule and do PO, When the processes are run
sequentially, there is no possibility that while one process is waiting for [/Q,
another can use the CPU. Thus running the processes strictly scquentially may
not be optimal. On the other hand. if none of the processes do any FO at all. shor-
test job first is better than round robin, so under some circumstances running all
processes sequentially may be the hest way.

Let us now suppose that the processes do both 1/0 and computing. so that
round robin is & reasonable scheduling algorithm. The resource requests might
oceur in the order of Fig. 3-4(d). If these six requests are carried ouf in that order,
the six resulting resource graphs are shown in Fig. 3-4(e)-(}). After requesi 4 has
been made, A blocks waiting for 5. as shown in Fig. 3-4(h). In the next two steps
8 and C also block, ultimately leading 1o a cycle and the deadlock of Fig. 3-4(ji,

However, as we have already mentioned, the operating system is not required
to run the processes in any special order. In particular, it granting a particulur
request might lead to deadlock. the operating system can simply suspend the proc-
ess without granting the request (i.c., just not schedule the process) until it is sute.
~In Fig. 3-4.3f the operating system knew about the impending deadiock, it could
- suspend B instead of granting it . By running only A and €, we would get the
requests and releases of Fig. 3-4(k) instead of Fig. 3-4(d). This sequence leads 10
the resource graphs of Fig. 3-4(1)-(q), which do not lead to deadlock.

After step (q), process B can be granted S because A is finished and € has
everything it needs. Even if 8 should eventually block when requesung 7. no
deadlock can occur. B will just wait until € is finished.

Later in this chapter we will study a detziled algorithm for making allocation
decisions that do not lead to deadlock. For the moment, the peint fo understand is



166 DEADLOCKS CHAP. 3
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Figure 3-4. An cxample of how deadlock vecurs and how it can be gvoided.
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that resource graphs are a tool that let us see i o given requesurelease sequence
leads o deadlock. We just carry oul the requests and releases step by step. und
after cvery step check the graph to see if it contains any cycles. If so, we have
deadlock; if not, there is no deadiock. Although our treatment of resource graphs
hias been for the case of a single resource of each type, resource graphs can also
be gencralized to handle multiple resources of the same type (Helt, 1972}

In general. four strategies are used for dealing with deadlocks.

1. Just ignore the problem altogether. Maybe if you ignore it, it wili
1ENOEC YO,

!u

Detection and recovery. Let deadlocks occur, detect them., and take
action,

3. Dynamic avoidance by careful resource allocation.

4. Prevention, by structurally negating onc of the four conditions neces.
sary to causc a deadlock.

We will examine each of these methads in wurn in the next lour sections.

3.3 THE OSTRICH ALGORITHM

The simplest approach is the ostrich algorithm: stick your head in the wand
and pretend there is no problem at allt. Different people react to this strategy in
different ways. Mathematicians find it lotally unacceptable and say  (hat
deadlocks must be prevented at all costs. Engineers ask how often the problem is
expected. how often the system crashes for other reasons. and how SIS 2
deadlock is. If deadiocks occur on the average once every five years, but svstem
crashes due to hardware [ailurcs. compiler errors. and operating system bugs
occur oe @ week, most engineers would not be willing to pay a large penalty in
pertormance or convenience to climinate deadlocks,

To make this contrast more specitic, most operating systems polentially suffer
from deadlocks that are not even detected. let alone automatically broken. The
total number of processes in a system is determined by the number of entries in
the process table. Thus process table slots are finite resources. It a fork {ails
because the table is full. a reasonable approach for the program doing the fork is to
wait & random time and try again.

Now suppose that a UNIX system has 100 process slots. Ten programs are
running, each of which needs to create 12 (sub)processes.  After cach process has

“Actually. this bit of folklore is nonsense, Osiriches can run a6 kmvhour and their kick is powerful
enaugh 1o Kill any liont with visions of a hig chicken dinner.
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exhausied the table. Each of the 10 original processes now sits in an endiess loop
forking und fatling—a deadlock. The probability of this happening is minuscule,
but it eould happen., Should we abandon processes and the fork call to eliminate
the problem? _

The maximum number of open files is similarly restricted by the size of the i-
node table, so a similar problem occurs when 1t filis up. Swap space on the disk is
another limited resource. In fact, almost every table in the operating system
represents  finite resource. Should we abolish all of these because it might hap-
pen that a collection of » processes might each claim /s of the total, and then
cach try 1o ¢laim another one?

Most operating systems. including UNTX and Windows, just ignore the prob-
lems on the assumption that most users would prefer an occasional deadtock to a
ruje restricting all users to one process. one open file, and one of evervthing, 1l
deadlocks could be eliminated for free, there would not be much discussion. The
problem is that the price is high, mostly in terms of putting inconvenient restric-
tons on processes, as we will see shortly. Thus we are faced with an unpieasant
trade-off between convenience and correcess, and a great deal of discussion
about which is more important, and to whomn. Under these conditions., general
solutions are hard o find.

3.4 DEADLOCK DETECTION AND RECOVERY

A second technigue is detection and recovery. When (his technique v used,
the system does not atlempt to prevent deadlocks from occurnng. Instead, it lets
them occur, tries to detect when this happens, and then takes some action fo
recover after the fact. In this section we will look at some of the ways deadlocks
can be detected and some of the ways recovery from them can be handled,

3.4.1 Deadlock Detection with One Resource of Each Tvpe

Let us begin with the simplest case: only onc resource ol each (ype exists.
Such a system might have one scanner, one C1 recorder, one plotter, and one wpe
drive, bul no more than one of each class of resource. In other words, we are
excluding systems with two printers for the moment. We will treat them later,
using a different method.

For such a system, we can constroct a resource graph of the sort illustrated in
Fig. 3-3. If this graph contains one or morc cycles. a deadlock exists. Any proc-
ess that is part of a cycle is deadlocked. Tt no cycles exist, the system is not
deadlocked.

As an example of 4 more complex syslem than the ones we have looked aut so
far, consider a system with seven processes, A though G, and six resources, R
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through W. The stale of which resources are currently owned and which ones are
currently being requested is as follows:

i. Process A holds R and wanls &,

)

Process B holds nothing but wants 7.

3. Process € holds nothing but wanis S.

4. Process 2 holds £ and wants § and 7
5. Process E holds T and wants V.
6. Process F holds W and wants §.

7. Process ¢ holds V and wanis /.

The question is: “Is this system deadlocked, and if so. which processes are
involved?”

To answer this question, we can construct the resource graph of Fig. 3-5(a).
This graph contains one cycle, which can be seen by visual inspection. The cycle
is shown in Fig. 3-5(b). From this cycle, we can see that processes D, E. and G
are alt deadlocked. Processes A, C, and F arc not deadlocked because S can be
allocated to any one of them, which then finishes and retums it Then the other
two can take it in turn and also complete.

A ©
©—[]+—@—{r}— C?>—~H—+

b
l,

(a) (b}

b
‘--_.__{
| S P

Figure 3-5. (a} A resource graph. (hy A cvele extriwcted rom (a),

Although it is reiatively simple to pick out the deadlocked processes by ¢yc
from a simpie graph, for use in actual systems we need a formal algorithm for
detecting deadlocks. Many algorithms for detecting cycles in directed graphs are
known. Below we wili give a simple one that inspects a graph and terminates
either when it has found a cycie or when it has shown that none exist. It uses one
data structure, L. a list of nodes. During the algorithm, arcs will be marked to
indicate that they have already been inspected, 10 prevent repeated inspections.
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The algorithm operates by carrying out the following steps as specified:

1. For each node, & in the graph. perform the following 5 steps with &
as the starting node.

2. Ininialize L to the cmpty list, and designate a}l the arcs as unmarked.
3. Add the current node 10 the end of £ and check to see if the node

now appears it £ two tumes. 1 it does, the graph contains a cycle
thisted In L) and the algorithn terminates.

4. From the given node, see if there are any unmarked outgoing arcs, [f
SO, 20 to step 5:f nol. go to step 6.

5. Pick an unmarked outgoing are at random and mark it. Then follow
it to the new curcent node und go to step 3.

6. We have now reached a dead end. Remove it and go back to the pre-
vious node, that is, the one that was current just before this one.
make that one the current node. and go to step 3. [f this node is the
tmitial node, the graph does not contain any cveles and the algorithm
lerminates.

What this algorithem does is take each node. in turn. as the root of what hopes
will be a tree. and does a depth-first scarch on it. I it ever comes back to o node
it has already encountered, then it has found a cycle. [f it cxhausts 2l the arcs

fr::rn aﬁ}ﬁﬂtﬂi‘“{}“ﬂ‘i‘ —t pordgo 1 } }1# " -
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This algorithm is far from optimal. For a better one. see (Even, [979).
Nevertheless, it demonstrates that an algorithm for deadlock delection exists.

3.4.2 Deadlock Detection with Muitiple Resource of Each Type

When mulbtiple copies of some of (he resources exist, a different approach is
nceded to detect deadlocks. We will now present a2 matrix-based algorithm for
detecting deadlock among s processes, P through £,. Let the number of
resource classes he m, with £ resources of class 1, £4 resources of class 2. and
generally, £, resources of class ¢ (1 £ = my). E s the existing resource vector.
[t gives the fotal number of mstances of each resource in existence. For example,
i class 11s tape drives. then £ = 2 means the system has two tape drives,

At any instant, some of the resources arc assigned and are nat available. Let
A be the available resource vector. with A; giving the number of instances of
resource / that are currently available (i.e, unassigned). It both of our two iape
drives are assigned. A4 | will be 0.

Now we need two arrays, €. the current allocation matrix, and R. the
request matrix. The i-th row of C tells how many instances of cach resource
class P; currently holds. Thus C; is the number of instances of resource j that are
held by process i, Similarly, H,—_),—I t5 the number of instances of resource I that P,
wanls. These four data structures are shown in Fig. 3-6.

Resources in existence Resources availahle
[E1. E, E, ... Em] {A1. .ﬂ.?: As- Amj
Currant allocation roatrix Hequast matrix
Cyy Cis 513 Cim Ry, Ry, Ry - R
21 R Ray Ry Hyy o R,

i : . : : . ' N N
i Gni CnE D-!S o Gnrn__ LHr;T I:Hr-.;;.‘ Hn:} o I;:[nrr*._

How nis current allocation Row 2 is what process 2 needs
to process n

Figure 3-6. The lour daty structures needed by the deadlock detection atporithi

An important invariant holds for these tour data structures. In particular,
every resource 1s either allocated or is available. This observation meuans that

!

C”' + .4._; = "..—“'I_,'
-1

In other words, if we add up all the instances of the resource J that have been
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allocated and to this add all the instances that are availabie. the result is the
number of instances of that resource class that exist

The deadlock detection algorithm 1s based on comparing vectors. Let us
define the relation A € B on two vectors A and 8 to mean that each element of A s
less than or equal to the corresponding clement of B, Mathematically, A £ 8
holds if and only if A; < B; for 1 €7 < m.

Each process is initially said o be unmarked. As the algorithm progresses,
processes will be marked. indicating that they are able to complete and are thus
not deadlocked. When the algorithm terminates. any unmarked processes are
known to be deadlocked,

The deadlock detection algorithm can now be given, as foliows.

I. Look for an unmarked process, P;. for which the i-th row of R is less
than or equal 1o A,

2. 1t such a process is tound, add the i-th row of C to A, mark the Proc-
ess, and go back to step 1. -

3. It no such process exists, the algorithm terminates.

When the algorithm finishes. all the unmarked processes. It any. are deadlocked.

What the algorithm is doing in step | is looking for a process that can be tun
to completion. Such a process is characterized as having resource demands that
can be met by the currenily available resources. The selected process is then run
until it finishes, at which time it returns the resources it is holding to the pool of
available resources. It is then marked as completed. (f all the processes are ulti-
matety able to run, none of them are deadlocked. 1f xome of them can never run.
they are deadlocked. Although the algorithm is nondeterministic (hecause 1t may
run the processes in any feasible order), the result iy always the same.

As an example of how the deadlock detection algorithm works, consider
Fig. 3-7. Here we have three processes and [our resource classes. which we have
arbitrarily labeled tape drives, plotters, scanner, and CD-ROM drive. Process |
has one scanner. Process 2 has two tape drives and a CD-ROM drive. Process 3
has a plotter and two scanners. Each process needs additional resources. as shown
by the R masrix .

To run the deadlock detection algorithm. we look for a process  whaose
resource request can be satisfied. The first one cannor be satisficd hecause there
is no CD-ROM drive available. The sccond cannot be satisfied either, hecause
there is no scanner {ree, Fortunately, the third onc can be satisfied, so process 3
runs and eventually returns all its resources, giving

A=(222M)
Al-this point process 2 can run and return its resources, 2iving

A=(4221;

Now the remaining process can run. There is no deadlock in the system.
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Figure 3.7. An example for the deadlock detection alporithor

Now consider a rainor variation of the situation of Fig. 3-7. Suppose that
process 2 needs a CD-ROM drive as well as the two tape drives and the plotier.
None of the requests can be satistied, so the entire system ts deadlocked.

Now that we know how to detect deaclocks, the question of when to look for
them comes up. One possibility is to check every time a resource request is made.
This is certain to detect them as early as possible. bur it is potentially expensive in
terms of CPU time. An alternative strategy is to check every & minutes, or
perhaps only when the CPU utilization has dropped below some threshold. The
reason for considering the CPU utilization is thar if enough processes are
deadlocked, there will be few runnable processes. and the CPU will often be jdic.

3.4.3 Recovery from Deadlock

Suppose that our deadlock detection algorithm has succeeded and detected a
deadlock. What next? Some way is needed to recover and get the system going
again. In this section we will discuss various ways ol recovering trom deadlock.
None of them are especially attractive, however

Recovery through Preemption

in some cases it may he possible o temporarily take a resource away {rom its
current owner and give it (o another process. In many cases, manual intervention
may be required. especially in batch processing operating systems runping on
mainframes,

For cxample, to take a laser printer away from its owner, the operalor can ¢ol-
lect all the sheets already printed and put them in a pile. Then the process can be
suspended (marked as not runnable). At this point the printer can be assigned to
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another process. When that process tinishes, the pile of prinied sheets can be put
back in the printer’s output tray and the original process restarted,

The ability to take a resource away {rom a process, have another process use
it, and then give it back without the process nolicing it is highly dependent on the
nature of the resource. Recovering this way is frequently difficult or impossible.
Choosing the process to suspend depends largely on which ones have resources
that can easily be taken back.

Recovery through Rellback

If the system designers and machine operators know that deadlocks are likely.
they can arrange to have processes checkpointed periedically.  Checkpointing a
process means that its state is writien to a file <o that it can be restarted later. The
checkpoint contains not only the memory image, but also the resource state. that
ts. which resources are currently assigned to the process, To he most effective.
new checkpoints should not overwrite old ones but should be written to new files,
50 as the process executes, a whole sequence ol checkpaoint files are accumulated.

When a deadlock is detected. it is easy (0 see which resources are needed. To
do the recovery, a process that owns a needed resource is rolled back to a point m
time before it acguired some other resource by starting one of s earlier check-
points. Al the work done since the checkpoint is fost {e.g.. output printed since
the checkpoint must be discarded. since it will be printed again). In effect, the
process is reset to an earlier moment when it did not have the resource, which is
now assigned to one of the deadlocked processes. if the resarted process tries to
acquire the resource again. it will have to wait until it becomes available.

Recovery through Killing Processes

The crudest, but simplest way to break u deadiock is to kill one or more
processes. One possibility is to Kill a process in the cycle. With a little luck, the
other processes will be able 10 continue. If this does not help, it can be repeated
until the cyele is broken.

Altemmatively, a process not in the cycle can be chosen as the victim in order
to release its resources. In this approach. the process to be Killed is carefully
chosen because it is holding resources that some process in the cycle needs. For
cxample. one process might hold a printer and want a plotter. with another Process
hoiding a plotter and wanting a printer. These two are deadlocked. A third proc-
ess may hold another identical printer and another wdentical plotter and be happily
running.  Killing the third process will release these resources and break rthe
deadlock involving the first cwo.

Where possible, it is best to kill a process that can be rerun from the begin
ning with no il effects. For example, a compilation can always be rerun hecause
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all it does is read a source file and produce an object file. 1f it is killed part way
through, the first run has no influence on the second run.

On the other hand, a process that updares a database cannot always he run 2
second tgme safely. If the process adds 1 0 some record in the database, running
it once, Killing it. and then running it again will add 2 to the record. which is
INCOrrect.

3.5 DEADLOCK AVOIDANCE

[n the discussion of deadlock detection, we tacitly assumed that when a proc-
ess asks for resources, it asks for them all at once (the R matrix of Fig, 3-6). In
most systems, however. resources are requested one at a time. The system must
be able 1o decide whether granting a resource is safe or not and only make the
allocation when it is sale. Thus the question arises: Iy there an algorithim that can
always avoid deadlock by making the right choice all the time? The answer is a
qualified yes—we can avoid deadlocks. but only if certain information is avail-
able in advance. In this section we examine ways 10 avold deadlock by careful
resource allocation,

3.5.1 Resource Trajectories

The main algorithms for doing deadlock avoidance arc based on the concept
of safe states. Before describing the algorithms, we will make a slight digression
to look at the concept of safety in a graphic and casy-to-understand way.,
Although the graphical approach does not translate directly into u usable algo-
rithm, 1t gives a good intuitive feel for the nature of the problem,

In Fig. 3-8 we sec & model for dealing with two processes and two resources.,
for example, a printer and a plotter. The horizontal axis represents the number of
instructions executed by process 4. The vertical axis represents the number of
Instructions executed by process B. Ar 7, A requests a printer: at f» it needs a
plotier. The printer and ploiter are reteascd at Iz and [y, respectively. Process B
needs the platter from /5 to /5 and the printer from fo t0 ]y,

Every point in the diagram represents a Joint state of the two processes. Ini-
(tally, the state is al p. with neither process having exccuted any instructions. [f
the scheduler chooses to run A first, we get to the point ¢, in which 4 has executed
some number of instructions, but 8 has execuied none, At point ¢ the trajectory
becomes vertical. indicating that the scheduler has chosen to run 8. With & single
processor, all paths must be harizontal or vertical. never diagonal. Furthermore,
motion is always to the north or cast, never o the south or west (processes cannot
run backward).

When A crosses the | line on the path [rom rto s, it requests and is granted
the printer. When & reaches point ¢, it requests the ploter.
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Figure 3-8, Two process resoutce trajectones.

The regions that are shaded are especially interesting. The region with lines
slanting from southwest (o northeast represents both processes having the printer.
The mutual exclusion rule makes il impossible to enter this region. Similarly, the
region shaded the other way represents both processes having the plotter, and is
cqually 1mpossible.

if the system ever eaters the box bounded by /; and /- on the sides and /5 and
{¢ top and bottom, it will eventually deadlock when it gets to the intersection of
I, and f,. At this point. A 1s requesting the ploter and B is requesting the printer.,
and both are already assigned. The entire box is unsafe and must not be entered.
AL point 7 the only safe thing te do is run process A until it gets to /;. Beyond
that, any tragectory to u will do.

The imporfant thing to sec here 15 at point 7 B 18 requesting a resource. The
system must decide whether to grant it or not. If the grant is made, the svsicm
will enter an unsafe region and eventually deadlock, To avoid the deadlock, B
should be suspended until A has requested and released the plotter.

3.5.2 Safe and Unsafe States

The deadlock avoidunce algorithms that we will study use the information of
Fig. 3-6. At any instant ot time, there is a current state consisting of £. A, €, und
R. A siate is said 1o be safe if it is not deadlocked and therc is some scheduting |
order m which every process can run to completion even if all of them suddenly
request their maximum number of resources immediately. It is easiest to illustrate
this concept by an example using one resource. In Fig. 3-%a) we have a state in
which A has 3 instances of the resource but may need as many as 9 eventually, 8
currently has 2 and may need 4 altogether. laier, Similarly, € also has 2 but may
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nced an additional 5. A wtal of L0 jnstances of the resource exist. so with 7
resources already allocated, there are 3 suil free.

Has Max Has Max Has Max Has Max Has Max
A 3 9 3 9 3 o A 3 g 3 9
B 2 4 B 4 4 B o - B 0 - B 4] -
< 2 7 2 K 2 i C 7 K 4] -
Free: 3 Free: t Frae: & Free: § Free: 7
() (b) (c) (d} (e}

Figure 3-%. Demonsiralion that the state in (a) 1s sale.

The state of Fig. 3-9{a) is sate because there exists a sequence of allocations
that allows all processes to completc. Namely, the scheduler could simply run 8
exclusively, until it asked for and got two more instances of the resource, leading
to the state of Fig. 3-9(b). When B completes, we get the state of Fig, 3-U(c).
Then the scheduler can run C. leading eventually to Fig. 3-%d). When C com-
pletes, we get Fig. 3-%e). Now A can gel the six instances of the resource it needs
and also complete. Thus the state of Fig. 3-9(a) is safe because the sysiem. by
careful scheduling, can avoid deadlock.

Now suppose we have the initial state shown in Fig. 3-10(a). but this time A
requests and gets another resource, giving Fig. 3-10(b}. Can we find a sequence
that is guaranteed to work? Let us try. The scheduler could run B until it asked
for all its resources, as shown in Fig, 3-10i¢).

Has Max Has Max Has Max Has Max
A 3 9 A 4 g A 4 g & 4 g
B 2 4 B 2 4 B 4 4 B —] —
c 2 7 C 2 7 C 2 7 C 2 7
Free: 3 Free: 2 Frea: 0 Frae: 4

{a) {b) {c) {dh
Figure 3-10. Domonstration that the state in (h) is not sale.

Eventually, B completes and we get the situation of Fig. 3-10¢d). At this point
we are stuck. We only have four instances of the resource tree, and each of the
active processes needs five. There is no scquence that guarantees complenon.
Thus the allocation decision that moved the system from Fig. 3-10{a) 1w Fig. 3-
10(b) went from a safe state to an unsale state, Running A or € next starting at
Fig. 3-10(b) does not work either. In retrospect. A's request should not have been
granted.

I is worth noting that an unsafe statc is not a deadlocked state, Starting ar
Fig. 3-10(b), the system can run for a while. In fact, onc process can even com-
plete. Furthermore, it is possible that A might release a resource before asking for
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any more, allowing € to complete and avoiding deadlock altogether. Thos the
difference between a safe state and an unsate state is that from a safe state the sys-
tem can guaranfee that ail processes will finish; from an unsafe state. no such
guarantee can be given,

3.5.3 The Banker’s Algorithm for a Single Resource

A scheduling algonthm that can avoid deadlocks is due to Dijkstra (19635) and
is known as the banker’s algorithm and is an cxtension of the deadlock detection
ulgorithm given in Sec. 3.4.1. It is modeled on the way a small-town hanker
might deal with a group of customers to whom he has granted lines of credit.
What the algorithm doces is check to see if granting the request leads to an unsafe
state. If it does, the request is denied. If granting the request leads (o a safe stale,
it is carried out. In Fig. 3-11(a) we see four customers. A, B, C.and P, cach of
whom has been granted a certain number of credit units {e.g.. | unmit1s 1K dollars).
The banker knows that not all customers will need their maximum credit immedi-
ately. so he has reserved only 10 units rather than 22 1o service them. (In this
analogy, customers are processes, units are, say. tape drives. and the banker is (he
operating system.)

Has Max Has Max Has Max
A Q [+ A 1 g A 1 5
B{lo 5 B | 1 5 g | 2 5
c o 4 C 2 4 —C 2 4
o 0 7 (W 4 7 B 4 7
Free: 10 Free: 2 Free: 1
{al {b) {c)

Figure 3-11. Threc resource allocation states: £ Sale, (b Sate. (o Linsate.

The customers go about their respective businesses, making loan requests
from time to time (i.c., asking for resources). Af a certain moment. the sityation is
as shown in Fig. 3-11(b). This state is safe because with two units lett. the banker
can delay any requests cxcept (s, thus letting C finish and releuse all Tour of his
resources.  With four units in hand. the banker can let cither £ or B have the
necessary units, and so on.

Consider what would happen if a request from B for one more unit were
granted n \ig. 3-11(b). We would have situation Fig. 3-11(c), which ts unsate. If
atl the customers suddeniy asked for their maxintwm loans, the banker could not
satisfy any of them, and we would have a deadlock. An unsafe state does not
have o lead to deadlock, since a customer might not need the entire credit Tine
available, but the banker cannot count on this behuvior.,

The banker’s algorithm considers sach request as il oceurs, and see if granting
it leads 10 a safe state. I it does. the request is granted: otherwise, it is postponed
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unti! Jater. "Fo see it a state is safe, the banker checks to sce if he has enuu.gh
resources to satisfy some customer. 1If so. those loans are assumed to be repaid.
and the costomer now closest to the limit is checked, and so on. If all loans can
eventually be repaid. the state is safe and the initial request can be granted.

1.5.4 The Banker’s Algorithm for Multiple Resources

The banker™s algovithm can be generalized to handle multiple resources. Fig-
ure 3-12 shows how it works.

i @ & &

Fie s g e &8

& F o S QT A %o &
Al3i0]1 )1 Af111]0]0 E = (6342}
Blo|1]o]0 Bfo|1]1]02 Z:E?gggi
Cl11 0 Cr3j110]o0

D1 (1|01 Do |(1]0
EJo|[o|0|oD EjJEli|1]|0
Resources assigned Rescurces still needed

Figure 3-12. The banker's algorithm with mulliple resonrces.

In Fig. 3-12 we see two matrices. The one ovn the left shows how many of
each resource are currently assigned to each of the five processes. The matrix on
the right shows how many resources each process still needs in order to complete.
These matrices are just € and R from Fig. 3-6. As in the single resource case,
processes must state their total resource nceds before executing. so that the system
can compute the right-hand matrix at cach instant.

The three vectors at the right of the figure show the existing resources, £, the
posscssed resources, P, and the available resources, A, respectivelv. From E we
see that the system has six tape drives, three plotters, four printers. and two CI3-
ROM drives. Of these. five tape drives. three plotters. two printers. and two CD-
ROM drives arc currently assigned. This fact can be seen by adding up the tour
resource columns in the left-hand matrix. The available resource vector is simply
the difference between what the system has und what is currently in usc,

The algorithm for checking to see if a state is safe can now be stated.

L. Look tor a row. R. whose unmet resource needs are all smalter than
or equal to A, If no such row exists, the system will eventually
deadlock since no process can run 10 compietion.

b

Assume the process of the row chosen requesis all the resources it
needs (which is guaranteed to be possible) and finishes. Mark that
process as lerminated and add all its resources to the A vector,
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3. Repeat steps | and 2 until either all processcs are marked terminated,
in which case the initial state was safe. or until a deadlock occurs, 1n
which case 1t was not.

If several processes are eligible to be chosen in step 1, it does not matier which
one 15 selected: the pool of available resources either gets larger, or at worsL. stays
the same.

Now let us get back to the example ot Fig. 3-12. The current state is safe.
Suppose that process B now requests a printer. This request can be granted
because the resulting state is siill sate (process D can finish, and then processes 4
or E, followed by the rest).

Now imagime that after giving B one of the two remaining prinfers. £ wants
the last pnnter. Granting that request would reduce the vector of uavailable
resources o (1 O 0 0}, which leads to deadlock. Clearly E's request must be
deferred lor a while,

The banker’s algorithm was first published by Dijkstra in 1965, Since that
time, nearly every book on operating systems has described it in detail. Innumer-
able papers have been written about various aspects of it Unfortunately, few
authors have had the auduacity to point out thal although in theory the algorithm is
wonderful, in practice it is essentially useless because processes rarely know in
advance what their maximum resource needs will be. In addition. the number of
processes is not fixed. but dynamically varying as new users log in and out.
Furthermore, resources (hat were thought to be available can suddenly vanish
(tape drives can break). Thus in practice, few, it any. cxisting systems use the
banker’s algorithm for aveiding deadlocks.

3.6 DEADLOCK PREVENTION

Having seen that deadlock avoidance is essentiully impossible. because it
requires information about fulure requests, which is not known, how do real SY5-
tems avoid deadlock? The answer is to go back to the four conditions stated by
Coffman et al. {1971) 10 see it they can provide a clue. If we can ensure that at
tcast one of these conditions is never satisfied. then deadlocks will be structurally
impossible {Havender, 1968).

3.6.1 Attacking the Mutual Exclusion Condition

First let us attack the mutual exclusion condition. If no resource WEre ever
assigned exclusively to a single process. we would never have deadlocks. How-
ever, 1t 1s equally clear that altowing two processes o write on Lhe printer at the
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same time will lcad to chaos. By spooling printer output. several processes can
generale output at the same time. In this model. the -:111.I}f process that actually
requests the physical printer 1s the printer daemon.  Since the: daemon never
requests any other resources, we can eliminate deadlock for the printer,

Unfortunately. not all devices can be spooled (the process table does not lend
itself well 10 being spooied). Furthermore. competition for disk space for sp_m}l_
ing can itsclt lead to deadlock. What would happen if two processes cach trlled
up halt of the available spooling space with output and neither was finished pro-
ducing output? If the daemon was programmed to begin printing even before all
the output was spooled, the printer might lie idle if an qutput process decided to
wait several hours after the first burst of output. For this reason, daemons are nor-
mally programmed to print only after the complete output file is available. In this
case we have two processes that have each finished part, but not all, of their out-
put. and cannot continue. Neither process will ever finish. so we have & deadlock
on the disk.

Neverthetess, there is a germ of an idea here that is frequently applicable.
Avold assigning a resource when that is not absolutely necessary, and try to make
sure that as few processes as possible may actually claim the resource,

3.6.2 Attacking the Hold and Wait Condition

The second of the conditions stated by Cotiman et al. looks shightly more
promising. If we can prevent processes that hoid resources from waiting {or more
resources, we can eliminate deadlocks. One way (0 achieve this goal is to require
all processes to request ali their resources before starting execution. If everything
1s avatiable, the process will he allocated whatever it needs and can rn Lo come-
pletion. If one or more resources are busy. nathing will be allocated and the progc-
ess would just wait.

An immediate problem with this approach is that many processes do not know
how many resources they will need until they have started running. In fact, if they
knew. the banker's algorithm could be used. Another problem is that resources
will not be used optimally with this approach. Take. as an cxampie, a process that
reads data from an input tape, analyzes it for an hour, and then writes an Qutput
tape as well as plotting the results. If all resources must be requested in advance,
the process will tic up the output tape drive and the plotter for an hour.

Nevertheless, some mainframe hatch Nystems require the user to fist all the
resources on the first line of each job. The system then acquires all resources
immediately and keeps them until 1he job finishes. While this method puts & bur-
den on the programmer und wastes resources. it does prevent deadlocks,

A slightly different way to break the hold-and-wait condition is to require a
Proccss requesting a resource 1o first lemporarity release alt the resources it
currently holds. Then it tries to get everything it needs all at once,
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3.6.3 Attacking the No Preemption Condition

Auacking the third conditton (no preemption) is even less promising thun
anlacking the second one. If a process has been assigned the printer and ix in the
middle of printing its output, forcibly tuking away the printer because a needed
plotter is not available is tricky at best and impossible at worst.

3.6.4 Attacking the Circular Wait Condition

Only one condition s left. The circular wall can be eliminated in several
ways. One way is simply to have a rule saying that a process is entitled only to a
single resource at any moment. If it needs a second one, it must release the first
one. For a process that needs o copy a huge file from a tape 0 a printer. this res-
triction is unacceptable.

Another way to avoid the circular wait is to provide a global numbering of all
the resources, as shown in Fig. 3-13(a). Now the rule is this: ProOCesSses can
request resources whenever they want to, but all requests must be made in numer-
tcal order. A process may request first a printer and then a tape drive, but it mauy
not request first a plotter and then a printer.

1. Imagesetter ®

2. Scanner
3. Piotter

4. Tape drive _
5. CD Rom drive J

(a) (b}

Figure 3-13, (43 Numericaily ordered resources. (h) A resource araph.

With this ruie, the resource allocation graph can never have cycles. Let us sec
why this is true for the case of two processes, in Fig. 3-13(h}. We can gel a
deadlock only if A requests resource j and B requests resource ;. Assuming { and §
are distinct resources, they will have different numbers. It | > f. then 4 15 not
allowed 10 request j because that is lower than what it aiready has. 7 < j, then B
is not allowed to request ¢ because that is lower than what it already has. Either
way, deadiock is impossibie.

With multiple processes, the same logic holds. At every wstant, one of the
assigned resources will be highest. The process holding that resource will never
ask for a resource already assigned. It will cither finish. or at worst, request even
higher numbered resources. atl of which are available. Eventually. it will finish
and frec its resources. At this poinl. some other process will hold the highest
resource and can also finish. In shor, there exists a scenario in which all proc-
esses finish, so no deadlock is prescnt.
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A minor varation ot this algorithm is 10 drop the requirement that resources
be acquired in strictly increasing sequence and merely insist that no process
request a resource lower than what it is already holding. If a process initially
requests 9 and 10, and then releases both of them, it is effectivcly starting all over,
s0 there 1s no reason to prohibit it from now requestiag resource |,

Although numerically ordering the resources eliminaies the problem of
deadlocks, 1t may be tmpossible 10 find an ordering that satisfies everyone. When
the resources include process table stots. disk spooler space. locked database
records, and other abstract resources, the number of potential resources and dif-
ferent uses may be so large that no ordering could possibly work.

The various approaches 1o deadlock prevention are summarized in Fig. 3-14.

| _Condiion . Approach |

Mutual exciusion | Spodl evorything |
rold and wait _: Request all rescurces initiaily
No preemption .. TéErescurc.es away | N
Circular wait _ ‘ Order resources 'humeriualif,r“ i

Figure 3-14. Summary of approaches 1o deadlock prevention.

3.7 OTHER ISSUES

En this section we will discuss a few miscelluneous issues related to
deadlocks. These include two-phasc locking. nonresource deadlocks, and starva-
tion,

3.7.1 Two-Phase Locking

Although both avoidance and prevention ware not terrtbly promising in the gen-
cral case, for specitic applications, many excellent special-purpose algorithms are
known. As an example. in many database S¥stems, an operation that occurs fre-
quently is requesting locks on several records and then updating all the locked
records. When multiple processes are running at the same time, there is a real
danaer of deadlock.

The approach often used is called two-phase locking. In the first phase. the
process tries to lock all the records it needs, one at a time. I it succeeds, it beging
the second phase, perfurming its updates and releasing the locks. No real work is
done in the first phase.

If during the first phase, some record is needed that is already locked, the
process just releases all its locks and starts the firse phase all over. In a centain
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sense, this approach 18 similar fo requesting all the resources needed ?n advance,
or at least before anvthing irreversible i1s done. In some versions qf lwu-phf;se
locking. there 15 no release and restart if a {ock 1s encountered during the first
phase. In these versions, deadiock can occur.

However. this strategy is not applicable in gencral. In real-time sysiems and
process control systems. for exampie. it is not acceptable to just terminate a proc-
ess partway through because a resource is not available and start all over again.
Neither is it acceptable (o start over if the process has read or written messages to
the network, updaled files, or anything else that cannot be safely repeatcd. The
algorithm works only in those situations where the programmer has very carefully
arranged things so that the program can be stopped at any point during the first
phase and restarted. Many applications cannot be structured this Wiy,

3.7.2 Nonresource Deadlocks

Al of our work so far has concentrated on resource deadlocks. One pProcess
wanis something that another process has and must wait until the first one gives it
up. Deadlocks can also occur in other situations, however, inctuding those not
involving resources at all,

For example, it can happen that two processes deadlock each walting for the
other one to do something. This often happens with semaphores. In Chap. 2 we
saw examples 10 which a process had to do a down on two semaphores, typically
miutex and another one. If these are done in the wrong order, deadlock can result.

3.7.3 Starvation

A problem closely related to deadlock is starvation. In dynamic system,
requests for resources happen all the time. Some policy Is needed 10 make a deci-
sion about who gets which resource when, This policy, although seemingly rea-
sonable. may lead to some processes never getting service even though they are
not deadlocked.

As an example. consider allocation of the printer. Imagine (hat the sysiem
uses some kind of aigorithm (o ensure that alfocating the printer does not lead to
deadlock. Now suppose that several processes all want it at once. Which one
should get 1t?

One possible allocation algorithm is to give it to the process with the smallest
file to print (assuming this information is avallable). This approach maximires
the number of happy customers and seems fair. Now consicler what happens in a
busy system when one process has a huge file to print. Every time the printer is
free. the system will look around and choose the process with the shortest file. If
there is a constant stream of processes with short files, the process with the huge
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file wilt never be allocated the printer. 11 will simply starve to death (be post-
poned indefinitely, even though it is not blocked).

Starvation can be avoided by using a first-come, first-serve. resource alloca-
tion policy. With this approach. the process waiting the longest gets served next.
In due course of time, any given process will eventually become the oldest and
thus get the needed resource.

3.8 RESEARCH ON DEADLOCKS

[ ever there was a subject that was investigated mercilessly during the early
days of operating systems, it was deadlocks. The reason for this is thut deadlock
detection is a nice little graph theory problem that one mathematically-inclined
graduate student can get his jaws around and chew on for 3 or 4 vears. All kinds
of algorithms were devised, each one more exotic and less practical than the pre-
vious one. Essentially, all this research has died out, with only a very occasional
new paper appearing {(e.g., Karacali et al., 2000). When an operating system
wants to do deadlock detection or prevention. which few of them do. they use one
of the methods discussed in this chapter,

There is still a little research on distributed deadlock detection, however, We
will not treat that here because (1) it is ouiside the scope of this book, and (23
none of it 15 even remotely practical in reul systems, Its main function scems (o
be keeping otherwise unemployed graph theorists off the strects,

3.9 SUMMARY

Deadlock is a potential problem in any operating system. It occurs when a
group of processes each have been granted cxclusive access to some [ESOUrces,
and each one wants yel another resource (hat belongs to another process in the
group. All of them are blocked and nonc will ever run again.

Deadlock can be avoided by keeping track of which states ure safe and which
are unsafe. A safe state is ome in which there cxists a sequence ol events that
guarantee that all processes can finish. An unsafe state has no such guarantge.
The banker’s algorithm avoids deadlock by not granting a request if that request
will put the system in an unsafc state.

Deadlock can be structurally prevented by building the system in such Wiy
that it can never occur by design. For example., by allowing a process to hold only
one resource at any instant the circular wait condition required for deadlock is
broken. Deadlock can aiso be prevented by numbering all the resources, and
making processes request them in strictly increasing order. Starvation can he
avoided by a first-come, first-served atlocation policy.
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1.
2.

it

10.

11.

12.

13.

14,

PROBLEMS

C(rive an example ot a deadlock taken trom pohocs.

Students working at individual PCs in a compuler laboratory send thetr files to be
printed by a server which spools the files on its haed disk. Under what conditions may
a deadlock occur if the disk space for the print spool is hmited? How may the
deadlock be avoided?

In the preceding question which resources are preemptable and which are nonpreempt-
uble”?

In Fig. 3-1 the resources are returned in the reverse order of their acquisition. Would
giving them back in the other order be just as goad?

Fig. 3-3 shows the concept of a resource graph. Do fllegal graphs exist, that is graphs
that structuratly vielate the mode! we have osed ol resource usage? If so. give an
exampie of one.

+ The discussion of the ostrich atgerithm mentions the possibility of process table slots

or other system tables filling up. Can you suggest a way 1o enable a system adminis-
trator (o recover from such a situation?

Consider Fig. 3-4. Suppose that in step (0) € reyuested S instead of requesting &,
Would this lead o deadlock? Suppose that it requested both § and 2

At a crossroads with STOP signs on all four approaches, the rule is that cach driver
yields the right of way to the driver on his right. This rule is not adequate when four
vehicies arrive simultaneously. Fortunately, humans are sometimes capable of acting
more intelligently than computers and the problem is usually resolved when one driver
signals the draver 10 his left 10 go ahead. Can vou draw an analogy between this
behavior and any of the ways of recovering from deadiock described in Sec. 3.4. 37
Why is a problem with such a simple solution in the human world so difficylt o apply
W a computer system’?

Suppose that in Fig. 3-6 Ciy + R, > E; for some i, What implcations does this have
for all the processes tinishing without deadlock”

All the tryectories in Fig. 3-8 are horizontal or vertical. Can YOI SNVISION any cir-
cumstances in which diagonal trajectories were also possible

Can the resource trajectory scheme of Fig. 3-8 also be used to illustrate the problem of
deadiocks with three processes and three resources? If 50, how can this be done? It
not, why not”?

In theory. resource trajectory graphs could be used to avoid deadlocks. By clever
scheduling, the operating system could avoid unsale regions. Sugeest a practical
problem with actually doing this,

Take a careful look at Fig, 3-i1(b), Il £ asks tor one moe unit, does this lead 1o a
safe state or an unsafe one”? What if the reguest came from € instead of 37

Can 4 system be in a state that is neither deadlocked nor safe? 1F 80, give an example,
I¥ not, prove that all states are cither deadiocked or safe.
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15.

16.

17.

18.

19,

20

21,

22,

A system has two processes and three identical resources. Each process necds a4 max-
unuom of two resources. Is deadlock possible? Lxplam vour answer.

Consider the previous problem again, but now with p processes each needing & max-
imum of mm resources and a toial of r resoorces avallable, What condition must hold o
make the system deadlock free?

Suppose that process 4 in Fig, 3-12 requests the last tape drive. Does this action lead
to a deadlock?

A computer has six tape drives, with 7 processes competing for them. Each process
miy need two drives. For which vatues of # is the system deadlock free?

The banker’s algorithm is being run in a sysiem with e resource classes and »
processes. In the hmit of large m and a, the number of operations that must be per-
lormed to check a stute for safety is proportional to m“#”. What are the values of
and b7

A system has four processes and five atlocatable resources. The current allocation and
maximum needs are as follows:

Alfacated Maxintum Avariahle
Process A 0211 11213 OOx 11
Process B 20110 222110
Process C 101D 21310
Process D 111140 11221

What is the smallest vaiue of x for which thjs is s safe state?

A distributed systern using mailboxes has two 1PC primitives, send and receive. The
latter primitive specifies a process to receive from and blocks if no message frem that
process 1s avalable, even though messages may be wailing from other processes.
There are no shared resources, but precesses necd to communicate freyuently about
other matters. Is deadtock possible? Discuss.

Two processes; A and 8, each need three records, |1, 2, and 3, in g database. If 4 ashs
for them n the order 1, 2, 3, and B8 asks for them in the samne order, deadlock is not
possible. Howcver, it B asks for them in the order 3, 2. 1. then deadlock is possible,
With Lhree resources, there are 3! or 6 possible combinations each process can request

the resources. What fraction of al} the combinations are guaranteed 1o be deadlock
free?

Now reconsider the above problem. but using two-phase locking. Will that eliminale

the potential for deadlock? Does it have any other undesirablc characteristios, how-
ever? If so, which oneg?

In an electronic funds transfer systent, there are hundreds of identical processes that
work as loHows. Fach process reads an input line specifying an amount of mongy, the
account 1o be credited, and the account 10 be debited. Then it locks both accounts and
transfers the moncy, releasing the locks when done. Wilh MaNy Processes running in
paraficl, there is a very real danger that having locked wccoumt x it will be unable 10
lock v because v has been locked by a process now waiting for x. Devise a scheme
that avoids deadlocks. Do not release an account record until you have completed the
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trunsacuens. (In other words. sclutons that fock one account and then release ir
immediately if the other 15 locked are not alfowed.)

One way {0 prevent deadlocks 1% to eliminate the hold-and-wait condition. In the text
it was proposed that before asking for 4 new resource. a process must first rf:lcus.e
whutever resources i already holds tassuming that 18 possible). However, doing so
introduces the danger that tt mayv get the new resource bt lose some of the existing
ONes 1o competng processes. Propose an improvement to this scheme.

A computer science student assigned to work on deadlocks thinks of the following
brilliant way to climinate deadlocks. When 4 process requests a resource, it specifics
a time hmit. [F the process Blocks because the resource s not available, 5 timer is
started. If the tine himit is exceeded. the process is released and allowed to run again.
i you were the professor, what grade would you give this proposal and wh Y.

Cinderella and the Prince are geiting divorced. To divide their property, they have
agreed on the following algorithm. Every morning. cach onc may scend a letter to the
ather’s fawyer requesting one item of property. Since it takes a day {or leiters 10 be
delivered, they have agreed that if both discover that they have requested the same
itemn on the same day. the next day they will send a letter canceling the request.
Among their property is their dog. Woofer. Woofer's doghouse, their canary. Tweeter.
and Tweeter’s cage. The animals love (heir houses, so it has been agreed that any divi-
ston of property separating an animai from its house is invalid. requirtng the whole
division to start over from scratch. Both Cinderclla und the Prince desperately want
Woofer. 5o they can go on (separate) vacations, vach spouse hus programmed a per-
sorrl computer to handle the negotiation. When they come back from vucation. the
computers are sull negotiating. Why? Is deadlock possible? 1y starvation possihle?
Discuss.

A student majoring in anthropology and minoring in computer scicnce has embarked
0n a4 research project to see if African baboons can he taught aboul deadlocks. He
locates a deep canyon and fastens a rope across i, so the baboons cun cross hand-
over-hand. Several baboons can cross at the same time, provided that they are all
going in the same direction. I eastward moving and westward moving baboons cver
get onto the rope at the same timc. a deadlock will result (the baboons will gct stuck in
the middie) hecausc it is impossible for one baboon (o climb over another one while
suspended over the canyon. 1T & baboon wants to cross the canyon. he must check 1o
sce that no other baboon is currently crossing in the opposie direction. Write a pro-
gram using semaphores that avoids deadlock, Do not worry aboul a series of castward
moving baboons holding up the westward miving baboons indefinitely.

Repeat the previous problem. but now avoid starvation. When a baboon that wants 1o
cross to the east arrives at the rope and linds baboons Crossing tw the west, he waits
untit the rope is emply, but no more wesiward moving baboons are allowed to start
untit at least one baboon has crossed the other way.

Program a simulation of the banker s algonithm. Your program shouid cycle through
each of the bank clients asking lor a request and evaluating whether it is safe or
unsale. Oulpet a log of requests and decisions 1o a file,



MEMORY MANAGEMENT

Memory 1s an important resource that must be carefully managed. While the
average home computer nowadays has a thousand times as much memory as the
1BM 7094, the largest computer in the world wn the early 1960s, programs are get-
ting bigger faster than memories. To paraphrase Parkinson's law, “Programs
expand to fill the memory available to hold them.” In this chaptler we will study
how Dperating sysiems manage memory.

kdeally, what every programmer would like is an infinitely large. infinitely
fast memory that is also nonvolatile, that is, does not lose its contents when the
electric power fails. While we are at it. why not also ask for it to be inexpensive,
too? Unfortunately technology does not provide such memories. Consequentty,
most computers have a memory hierarchy, with a small amount of very fast,
expensive, volatile cache memory, iens of megabyies of medium-speed, medium-
price, volatile main memory (RAM), and tens or hundreds of gigabytes of slow,
cheap, nonvolatile disk storage. [t is the job of the operating system to coordinate
how these memories are used.

The part of the operating system that manages the memory hierarchy is called
the memory manager. [is job is to keep track of which parts of memory are in
use and which parts are not in use, 10 allocate memory 10 processes when they
need it and deallocate it when they are done, and to manage swapping between
main memory and disk when main memory is too small 10 hold all the processes.

In (his chapter we will investigate a number of different memory management
schemes, ranging from very simple to highly sophisticated. We will start at the
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beginning and look first a1l the simplest possible memory management system and
then gradually progress to more and more elaborate ones. N

As we pointed out in Chap. |, history tends to repeat itself in the computer
world, While the simplest memory management schemes are no longer used on
desktop compaters, they are still used in some palmtop, embedded, and smart card
systems. For this reason, they are still worth studying.

4.1 BASIC MEMORY MANAGEMENT

Memeory management systems can be divided into two classes: those that
move processes back and forth between main memory and disk during cxecution
{swapping and paging), and those that do not. The latter are simpler, so we will
study them first. Later in the chapter we will examine swapping and paging.
Throughout this chapter the reader should keep in mind that swapping and paging
arc largely artifacts caused by the lack of sufficient main memory to hoeld all the
programs at once. If main memory ever gets so large that there is truly enough of
it, the arguments in favor of one kind of nemary management scheme or anather
may become obsolete,

On the other hand. as mentioned ubove, software secms to be growing even
faster than memory, so etficient memory Management may always be needed. In
the 1980s, there were many universities that ran a timesharing system with dozens
of (more-or-less satisfied) users on a 4 MB VAX. Now Microsoft recommends
having at least 64 MB for a single-user Windows 2000 system. The trend toward
multimedia puts even more demands on memaory, so good memory management is
probably going to be needed for the next decade at least.

4.1.1 Monoprogramming without Swapping or Paging

The simplest possible memory management scheme is to run just one program
at a lime, sharing the memory between thal program and the operating system.
Three variations on this theme are shown in Fig. 4-1. The operating system miay
be at the bottom of memory in RAM (Random Access Memory), as shown in
Fig. 4-1(a), or it may be in ROM (Read-Only Memaory) ar the top of memory. as
shown in Fig. 4-1(b), or the device drivers may be at the top of memory in a4 ROM
and the rest of the system in RAM down below, as shown in Fig. 4-1(¢). The first
model was formerty used on mainframes and minicomputers but i< rarely osed
any more. The second model is used on some palmtop computers and embedded
systems. The third model was used by early personal computers (e.g.. running
MS-DOS), where the portion of the system in the ROM is called the BIOS {Basic
Input Output System).

When the system is organized in this way, only one process at a time can be
running. As soon as the user types a commuand. the operating system copies the
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Figore 4-1. 'Three simple wavs of organizing memory with an operating system
wid ome user process. Other possibelitics abso exist

requested program from disk to memory and executes . When the process {in-
1shes, the operating system displays a prompt character and waits for 4 new com-
mand. When it receives the command. 1t loads o new program into memory,
overwriling the first one.

4.1.2 Multiprogramming with Fixed Partitions

Except on simple embedded systems. monoprogramming is hardly uscd any
more. Most modern systems allow muitiple processes ta run at the same ume.
Having multple processes running al once means that when one process is
blocked waiting for 17O (o finish, another one can use the CPU. Thus muitipro-
gramming increases the CPU wolization. Network servers always have the ability
to run multiple processes {for different clients) at the same time. bur most client
(1.e., desktop) machines also have this ability nowadays.

The eusiest way to achieve multiprogramming is simply to divide memory up
Lo 7 (possibly uncqual) partitions. This partitioning can, for example. be done
manuully when the system is started up.

When a job arrives, it can be put into the input queue for the smallest partition
large enough 10 hold it. Since the partitions are fixed in this scheme. any space in
a partition not used by a job is lost. In Fig. 4-2(a) we sce how this system of fixed
partitions and separate input queues looks.

The disadvantage of sorting the incoming jobs into separate queues becomes
apparent when the queue for a large partition is empty but the queve for a smail
partition 1s full, as is the case for partitions 1 and 3 in Fig. 4-2(a). Here small Jobs
have to waif to get mto memory, even though plenty of memory is free. An alter-
native organization is to maintain a single gueue as in Fig. 4-2(h). Whenever a
partition becomes free, the job closest to the front of the quene that fits in it could
be loaded into the empty partition and run. Since it is undesirable to waste a large
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Figure 4-2. (a) Fixed memory partitions with separate input queucs for each
pariitton. () Fixed memory partitions with 4 vingle input quene.

pattition on a small job, a different strategy is to search the whole input gueue
whenever a partition becomes {rec and pick the largest job that fits. Note that the
latter algorithm discriminates against small jobs as being unworthy of having a
whole partition, whereas usually it is desirable 10 give the smallest jobs (otten
interactive jobs) the best service, not the worst.

One way out is to have at least one small partition around. Such a partition
will allow small jobs to run without having to allocate a large partition tor them.

Another approach is to have a rule stating that a job that is cligible to run may
not be skipped over more than k times. Each time it is skipped over, 1l gets one
point. When it has acquired k points, it may not be skipped again.

This system, with fixed partitions set up hy the operator in the morming and
not changed thereafter, was used by O5/360 on large 1BM mainframes for many
years. It was called MFT (Multiprogramming with a Fixed number of Tasks or
OS/MFT). Tt is simple to understand and equally simple to implement: incoming
Jobs are queued until a suitable partition is available, at which time the job is
loaded into that partitton and run until it tecminates. Nowadays, few. if any.
operating systems, support this model.

4.1.3 Modeling Multiprogramming

When multiprogramming is used. the CPU utlization can be improved,
Crudely put, if the average process computes only 20 percent of the time it is sit-
ting In memory, with five processes in memory at once, the CPU should be busy
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all the time. This meodel 1s unrealistically optimistic. however, since 1t assumes
that all five processes will never be waiting for 1/O at the same tme. _

A better model is to look at CPU usage from a probabilistic viewpoint. Sup-
posc that a process spends a fraction p of its time waiting for VO to comple§e+
With s processes in memory at once, the probability that all » processes are wait-
ing for /O (in which case the CPU will be idle} 1s p”. The CPU utilization is then
ziven by the formuka

CPU utilization = | — p*

Figure 4-3 shows the CPU utilization as a function of n, which is called the
degree of multiprogramming.

20% I/C wait
£ 100 1 -~
i
= =} H
T 8o 50% IV wait
£
s 60 80% /O wait
é 40
g
g 20
o

; i ; | I |
0 1 2 a 4 5 4] 7 B * I [V
Degree of multiprogramming

Figure 4-3. CPU utilization as a lunction of the number of processes in memory,

From the figure it is ciear that if processes spend 80 percent of their time
waiting for 1/0, at least 10} processes must be in memory at once to get the CPU
wastc below 10 percent. When you realize (hat an interactive process waiting tor
a user to typce something at a terminal 1s in O wait state, it should be clear that
/O wait imes of 80 percent and more are not unusual. But even in batch SV~
tems, processes doing a lot of disk I/O will often have this percentage or more.

For the sake of complete accuracy, it should be pointed out that the proba-
bilistic modcl just described is only an approximation. It implicitly assumes that
all n processes are independent, meaning that it is quite acceptable for a system
with five processes in memory to have three running and two waiting. But with a
single CPU, we cannot have three processes running at once, so a process beconi-
ing ready while the CPU is busy will have to wait. Thus the processes are mot
independent. A more accurate model can be constructed using queueing theory,
but the point we are making—multiprogramming lets proccsses use the CPU
when it would be otherwise idle—is, of course, still valid, cven if the true curves
of Fig. 4-3 are slightly different.

Even though the model of Fig. 4-3 is simple-minded, it can nevertheless be
used to make specific, although approximate, predictions about CPU performance,
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Suppose. for example, that a computer has 32 MB of memory. with the nperaﬁng
system taking up 16 MB and each user program taking up 4 MB. These sizes
ailow four user programs to be in memory at once. With an 80 percent averyge
170 wait, we have a CPU utilization (ignoring operating system overhead) of
| — (L.8* or about 60 percent. Adding another 16 MB of memory ullﬂws‘-lthe SYS-
tem to go from four-way multiprogramming (o eight-way multiprogramming, thus
raising the CPU utilization 10 83 percent. In other words. the additional 16 MB
will raise the throughput by 38 percent.

Adding yel another 16 MB would only increase CPU utilization from 83 per-
cent to 93 percent, thus raising the throughpur by only another 12 percent. Using
this model the computer’s owner might decide that the first addition is a good
mvestment but that the second is not.

4.1.4 Analysis of Multiprogramming System Performance

The model discussed above can also be used to anaiyze batch systems. Con-
stder, for example, a computer center whose jobs averiage 80 percent /O wait
time. On a particular morning. four jobs are submitted as shown in Fig. 4-4(a).
The first job. arriving at [0:00 AM.. requires 4 minutes of CPU time. With 80
percent VO wait, the job uses only 12 seconds of CPU time for each minute it is
sitting in memory, cven if no other jobs are competing with it for the CPU. The
other 48 seconds are spent waiting for FO 1o complete. Thus the job will have to
sit in memory for at least 20 minutes in order to get 4 minutes of CPU work done,
even in the absence of competition for the CPU.

From 10:00 AM. to 10:10 AM., job 1 is all by itself in memory and gets 2
minutes of work done. When job 2 arrives at 10:10 AM. the CPU utilization
increases from 0.20 to 0.36. due to the higher degrec of multiprogramming (see
Fig. 4-3}. However. with round-robin scheduling, each job gets half of the CPL.
so each job gets 0.18 minutes of CPU work done for each minute it 15 in memaory.
Notice that the addition of a second job costs the first Job only 10 percent of its
performance. 1t goes from getting 0.20 CPU iminutes per minute of real time Lo
getting (. [8 CPU minutes per minute of real time,

At 10:15 AM. the third job arrives. At this point job 1§ has received 2.9
minutes of CPU and job 2 has had (.9 minutes of CPL. Wilh three-way multipro-
gramming, each job gets 0.16 minutes of CPU time per minute of real time, as
shown in Fig. 4-4(b). From 10:15 AM to 1020 A.M. each of the three jobs pets
0.8 minutes of CPU time. At 10:20 AM. a fourth 1ob arrives. Fig. 4-4(¢) shows
the complele seguence of events.

4.1.5 Relocation and Protection

Multiprogramming introduces two essential problems that must be solved —
relocation and protection. Look at Fig. 4-2. From the tigure it is clear that dif-
ferent jobs will be run at different addresses. When a program is linked (i.e., the
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Figure 4-4, (a) Arrival and work requirements of four jobs. (b CPU utilization
for 1 to 4 jobs with 80 percent 1O wait. () Sequence of events as jobs artive
and finish. The numbers above the horizontal lines show how much CPU time,
in minutes, cach job pets in each interval,

main program, user-wnten procedures, and library procedures are combined into
a single address space), the linker must know at what address the program will
begin in memory.

For example. suppeose that the first instruction 1s a call to a procedure at abso-
lute address 1(00) within the binary file produced by the linker. 1If this program is
loaded 1n partition § (at address 100K). that instruction will jump to absolute
address 100, which is inside the operating system. What is needed is a call 1o
100K + {06, If the program is loaded into partition 2. it must be carried out as a
cail to 200K + 00, and so on. This problem is known as the relocation problem.

One possible solution is to actually modity the instructions as the program is
loaded into memory. Programs loaded into partitton 1 have 100K added to each
address, programs loaded into partition 2 bave 200K added 1o addresses, and so
forth. To perform relocation during loading like this, the linker must include in
the binary program a list or bitmap telling which program words are addresses ta
be reiocated and which are opcodes. constants, or other itemns that must not be
relocated. OS/MFT worked this way.

Relocation during loading does not solve the protection problem. A malicious
program can always construct a new instruction and jump to it. Because programs
n this system use absolute memory addresses rather than addresses reiative to a
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regisler, there 15 no way to stop a program trom building an instruction that reads
or writes any word in memory. In multiuser systems, it 15 highty undesirable to let
processes read and write memory belonging to other users. _ _

The solution that IBM chose for protecting the 360 was to divide memory into
blocks of 2-KB bytes and assign a 4-bit protection code to each block. The PSW
(Program Status Word) contained a 4-bit key. The 360 hardware trapped any
atiempt by a running precess to access memory whose protection code difféfed
from the PSW key. Since only the operating system could change the protection
codes and key, user processes were prevented from interfering with one another
and with the operating system itself.

An zlternative solution to both the relocation and protection problems is o
equip the machine with two special hardware registers, called the base and limit
registers. When a process is scheduled, the base register is loaded with the
address of the start of its partition, and the limit register is loaded with the length
of the partition. Every memory address generated automatically has the hase
register contents added to it before being sent t0 memory. Thus if the base regis-
ter contains the value 100K, a CALL 100 instruction is effectively turned into a
CALL 100K + 100 instruction, without the instruction itself being modified.
Addresses are also checked against the limit register to make sure that they do not
altempt to address memory outside the current partition. The hardware profects
the base and limit registers to prevent user programs from modif ying them.

A disadvantage of this scheme is the need 10 perform an addition and a com-
parison on every memory reference. Comparisons can be done fast. but additions
are slow due to carry propagation time unless special addition circuits are used,

The CDC 6600—the world’s first supercomputer—used this scheme. The
Intel 8088 CPU used for the original IBM PC used a wesaker version of this

scheme-—base registers, but no limit registers. Few computers use i any more
though.

42 SWAPPING

With a batch system, organizing memory into fixed partitions 15 simple and
effective. Each job is loaded into a partition when it gels to the head of the queue,
it stays tn memory until it has finished., As long as ¢nough jobs can be kept in
memory to keep the CPU busy all the time. there is no reason 1o use anything
more complicated,

With timesharing systems or graphically oriented pessonal computers, the
situation is different. Sometimes there is not enough main memory 1o hold all the
corrently active processes, so excess processes must be kept on disk and brought
m to run dynamically.

Two general approaches to memory management can be used, depending (in
part) on the available hardware. The simplest strategy, called swapping, consists
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of bringing 1n each process in its entirety, running It for a while, then putting n
back on the disk. The other strategy, called virtual memory, allows programs to
run even when they are only partially in main memory. Below we will study
swapping: in Sec, 4.3 we will examine virtual memory. N

The operation ol a swapping system 1s illustrated in Fig. 4-5. Imt:a]_fy only
process A 1s in memory. Then processes B and C are created or swapped in from
disk. In Fig. 4-3(d} A is swapped out to disk. Then D comes in and B goes out.
Finally A comes in again. Since A is now at a different location, addresses con-
tained in it must be relocated. either by software when it is swapped in or (more
likely} by hardware during program execution,
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Figure 4-5. Memory allocation changes as ProCesses Come inle memory and
leave i, The shaded regions are unused mamonry,

The main difference between the fixed partitions of Fig. 4-2 and the variable
partitions of Fig. 4-5 is that the number, location, and size of the partitions vary
dynamically in the latter as processes come and 20, whereas they are fixed in the
former. The flexibility of not being tied to a fixed number of partitions that may
be too large or too smail improves memory utilization, but it also complicates
allocating and deallocating memory, as well as keeping track of it.

When swapping creates multiple holes in memory, it is possible to combine
them all into one big one by moving all the processes downward as far as possi-
ble. This technique is known as memory compaction. 1t is usually not done
because it requires a lot of CPU time, For example. on a 256-MB machine that
can copy 4 bytes in 40 nsec, it takes about 2.7 sec to compact all of memory.

A point that js worth making concerns how much memory should be allocated
for a'process when it is created or swapped in. If processes are created with a
fixed size that never changes. then the allocation is simple: the operating system
aliocates exactly what is needed, no more and no less.
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1. however, processes’ data segiments can grow, for example, by dynamically
allocating memory from a heap, as in many programming languages. a problem
occurs whenever a process trics to grow. I a hole is adjacent to the process, it
can he allocated and the process allowed to grow iato the hole. On the other
hand, if the process is adjacent to another process, the growing process will either
have to be moved to a hole in memory large enough for it, or one or more
processes will have to be swapped out to create a large enough hole. If a process
cannol grow In memory and the swap area on the disk is full, the process will
have 1o wait or be killed.

Il 1t 15 expected that most processes will grow as they run, it is probably a
good 1dea to allocate a little extra memory whenever g process is swapped in or
moved, to reduce the overhead associated with moving or swapping processes that
no longer fit in their allocated memory. However, when swapping processes to
disk, only the memory actually in use should be swapped: it is wasteful to swap
the extra memory as well. In Fig. 4-6(a) we see a memory configuration in which
space for growth has been allocated 10 two processes.

: B-Stack
* Hoom for growth i B
...__t_____ ' : }Flaorn tor growth
. 8-Data
B ¥ Actually in use
; B-Program
77 %
2727 222
i A-Stack
i Haom for growth SEEEEPTEEEES I
_______ t______ ; ¢ } Room for growth
A-Data
A Actually in use
A-Program
Operating Operating
system System
{a) ib)

Figurﬁi 4-6. (a) Allocating space for a growing data segment. (h} Allocating
space for a growing stack and a growing data segment.

If processes can have two growing segments, for exampie, the data segment
being used as a heap for variables that are dynamically allocated and released and
a stack segment for the normal local variables and return addresses, an alternative
arrangement suggests itself, namely that of Fig. 4-6(b). In this fignure we see that
cj:ach process illustrated has a stack at the top of its allocated memory that is grow-
ing downward, and a data segment just beyond the program text that is growing
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upward. The memory between them can be used for cither segment. [f it runs
out, cither the process will have o be moved to a hole with enough space,
swapped out of memory unu! a large enough hole can be created, or killed.

4.2.1 Memory Management with Bitmaps

When memory 1s assigned dynamically, the operaling system must manage it,
In genersl terms, there are two ways to keep track of memory usage: bitmaps and
tfree lists. In this section and the next one we will look at these two methods in
turn.

With a bitmap, memory is divided up into allocation units. perhaps as small as
4 few words and perhaps as large as several kilobytes. Corresponding (0 each
allocation unit is a bit in the bitmap, which is 0 if the unit is free and | if it is
occupied (or vice versa). Figure 4-7 shows part of memory and the vorresponding
bitmap.

LB s 7, .0 | E P

4 /HHH ; v , ,

11111000G F'DE-——--—HSS—--—-—PBG-——FF’144—>

F1111111

11001111 C
11111000 H132—~—-P2{]E——-—P253—-—-H293x

i) 1 /b f

T T Hole Starts Length Process
at 18 2
{b) (c}

Figure 4-7. {a} A pun of memory with five processes and three holes. Thwe tick
marks show the memory allocation units. The shaded regions {0 in the bitmap)
are free. (b} The corresponding bitmap. (¢} The sume information as a list.

The size of the allocation unit is an important design issue. The smaller the
allocation unit, the larger the bitmap. However, even with an allocation unit as
small as 4 bytes, 32 bits of memory will require only 1 bit of the map. A memory
of 32n bits will use n map bits, so the bitmap will take up only 1/33 of memory. If
the allocation unit is chosen large, the bitmap will be smaller, hut appreciable
memory may be wasted in the last unit of the process 1f the process size is nol an
exact multiple of the aliocation unit.

A bitmap provides a simple way to keep track of memory words in a fixed
amount of memory bhecause the size of the bitmap depends only on the size of
memory and the size of the allocation unit. The main problem with it ts that when
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it has been decided to bring a & unit process into memory, the memory manager
must search the bitmap to find a run of & consecutive O bits in the map. Searching
a bitmap for a run of a given length is a slow operation (because the run may
straddle word boundaries in the map); this is an argument against bitmaps.

4.2.2 Memory Management with Linked Lists

Another way of keeping track of memory is to maintain a linked list of alio-
cated and free memory segments, where a segment is either a process or a hole
between two processes. The memory of Fig. 4-7(a} is represented in Fig. 4-7{c}
as a linked list of segments. Each entry in the list specifies a hole (H) or PIOCESS
(P), the address at which it starts, the length, and a pointer to the next entry.

In this example, the segment list is kept sorted by address. Sorting this way
has the advantage that when a process terminates or is swapped out. updating the
list is straightforward. A terminating process normally has two neighbors (except
when it is at the very top or bottom of memory}. These may be either processes or
holes, leading to the four combinations of Fig. 4-8. In Fig. 4-8(a) updating the list
requires replacing a P by an H. In Fig. 4-8(b) and Fig. 4-8{(c), two entries arc
coalesced into one, and the list becomes one entry shorter. In Fig. 4-8(d), three
entries are merged and two items are removed from the list, Since the process
table slot for the terminating process will normally point to the list entry for the
process itself, it may be more convenient to have the list as a double-linked list,
rather than the single-linked list of Fig. 4-7(c). This structure makes It easier 1o
find the previous entry and to see if a merge is possible.

Before X terminates After X terminates

@! a | x | B becomes W7
® | A | x PZ  becomes W
© V3 x | 8 becomes W B

W 0 x V70 veomes

Figure 4-8. Four neighbor combinations for the ierminating process, X,

When the processes and holes are kept on a list sorted by address, several
afgorithms can be used to allocate memory for a newly created process (or an
existing process being swapped in from disk). We assume that the memory
manager knows how much memory to allocate. The simplest atgorithm is first
fit. The memory manager scans along the list of segments unil it finds a hole that
is big enough. The hole is then broken up into two pieces, one for the process and
one for the unused memory, except in the statistically unlikely case of an exact fit.
First fit is a fast algorithm because it searches as little as possible.
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A minor variatiop of first fit 15 next fit. It works the same way as first fit,
except that it keeps track of where it is whenever it finds a suitable hole. The next
time it is called to find a hole, it starts searching the list from the place where it
left oft last time, instead of always at the beginning, as first fit does. Simulations
by Bays (1977) show that next fit gives slightly worse performance than first fit.

Another well-known algorithm is best fit. Best fit searches the entire list and
takes the smallest hole that is adequate. Rather than breaking up a big hole that
might be needed later, best fit tries to find a hole that is close to the actual size
needed.

As an example of first fit and best fit, consider Fig. 4-7 again. If a block of
size 2 is needed, first fit will allocate the hole at 5, but best fit will allocate the
hole at 18.

Best fit is slower than first fit because it must search the entire list every time
it is called. Somewhat surprisingly, it also results in more wasted memory than
first fit or next fit because it tends to fill up memory with tiny, useless holes. First
fit generates larger holes on the average.

To get around the problem of breaking up nearly exact matches into a process
and a tiny hole, one could think about worst fit, that is, always take the largest
available hole, so that the hole broken off will be big enough to be useful. Simu-
lation has shown that worst fit is not a very good idea either.

All four algorithms can be speeded up by maintaining separate lists for
processes and holes. In this way, all of them devote their full energy to inspecting
holes, not processes. The inevitable price that is paid for this speedup on alloca-
tion is the additional complexity and slowdown when deallocating memory, since
a freed segment has to be removed from the process list and inserted into the hole
list.

If distinct lists are maintained for processes and holes, the hole list may be
kept sorted on size, 10 make best fit faster. When best fit searches a list of holes
from smallest to largest, as soon as it finds a hole that fits, it knows that the hole is
the smaliest one that will do the Job, hence the best fit. No further searching is
needed, as it is with the single list scheme. With a hole list sorted by size. first fh
and best fit are equally fast, and next fit is pointless.

When the holes are kept on separate lists from the processes, a small optimi-
zation is possible. Instead of having a separate set of data structures for maintain-
ing the hole list, as is done in Fig. 4-7(c}, the holes themselves can be used. The
first word of each hole couid be the hole size, and the second word a pointer to the
tollowing entry. The nodes of the list of Fig. 4-7(c). which require three words
and one bit (P/H), are no longer needed.

Yet another allocation algorithm is quick fit, which maintains separate lists
for some of the more common sizes requested. For example, it might have a tabie
with » entries, in which the first entry is a pointer 10 the head of a list of 4-KB
holes, the second entry is a pointer to a list of 8-KB holes, the third entry a pointer
to 12-KB holes, and 50 on. Holes of say, 21 KB, could either be put on the 20-KB
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list or on a special list of odd-sized hoics. With quick fii. finding a hole of the
required size 1s extremely last, bul it has the same diﬂﬂd‘-’ﬂl_][ilgt: as all ﬁche!nes
that sort by hole size, namely, when a process terminates or is swapped out. find-
ing its neighbors to see il a merge 18 possible 1s expensive. I merging is m)[’ done,
memory will quickly tragment into a large number of small holes inte which no

4.3 VIRTUAL MEMORY

Muany years ago people were first confronted with programs that were too big
to Iitin the available memory. The solution usually adopted was 10 split the pro-
gram into pieces, called overlays. Overlay O would start running first. When it
was done, it would call another overlay. Some overlay systems were highly com-
plex. allowing multiple overlays in memory at once. The averlays were kept on
the disk and swapped in and out of memory by the operating system, dynamicaliy.
as needed.

Although the actual work of swapping overlays in and out was done by the
system. the work of splitting the program into pieces had to be done by the pro-
grammer. Splitting up large programs into small, modular picces was time con-
suming and boring, It did not take loug before someone thought of a wav o tumn
the whole job over to the computer.

The method that was devised (Fotheringham, 1961} has come to be known as
virtual memory. The basic idea behind virtugl memory 15 that the combined size
of the program, data, and stack may exceed the amount of physical memory avail-
able for it. The operating system keeps those parts of the program currently in use
in main memory, and the rest on the disk. For example, a 16-MB program can
run on a 4-MB machine by carefully choosing which 4 MB to keep in memory at
each instant, with pieces of the program being swapped between disk and memory
as needed.

Virtal memory can also work in a multiprogramming system, with bits and
pieces of many programs in memory at once. While a program 15 waiting for part
of itself to be brought in, it is waiting for 1/ and cannot run, so the CPU can be
given to another process, the same way as in any other multiprogramming system.

4.3.1 Paging

Most virtual memory systems use a technique called paging, which we wili
now describe. On any computer, there exists a set of memory addresses that pro-
grams can produce. When a program uses an instruction like

MOV REG,1000¢

it does this o copy the contents of memory address 1000 to REG (or vice versa,



SEC. 1.3 VIRTUAL MEMORY 203

depending on the computer). Addresses can be generated using indexing, base
registers, segment registers, and other ways,

The CPU sends virtual

CPU addresses to the MMU
package o
CPU 4~ |- Dick

- Memory i

[ | management | Memory controller
- unit

\\
= Bus

~

The MMU sends physical
addresses to the memory

Figure 4-9. The position and function of the MMU. Here the MML is shown
as being a part ol the CPU chip because it commonly is nowadays, However,
Jogically it could be a separate chip and was in yoars gone by,

These program-generated addresses are called virtual addresses and form the
virtual address space. On cormputers withour virtual memory, the virtual address
15 put directly onto the memory bus and causes the physical memory word with
the same address to be read or written. When virtual memory is used, the virtual
addresses do not go directly to the memory bus. Instead, they go to an MMU
(Memory Management Unit) that maps the virtual addresses onto the physical
memaory addresses as illustrated in Fig. 4-9.

A very simple example of how this mapping works is shown in Fig. 4-10). In
this example, we have a computer that can generate [6-bit addresses, from 0 up to
04K. These are the virtual addresses. This computer, however, has only 32 KB
of physical memory, so although 64-KB programs can be written, they cannot be
toaded into memory in their entirety and run. A complete copy of a program’s
core image, up to 64 KB, must be present on the disk, however. so that pieces can
be brought in as needed.

The virtual address space is divided up 1ato units called pages. The corre-
sponding units in the physical memory are called page frames. The pages and
page frames are always the same size. In this example they are 4 KB, but page
sizes from 512 bytes to 64 KB have been used in real systems. With 64 KB of
virtual address space and 32 KB of physical memory, we get 16 virtual pages and
8 page frames. Transfers between RAM and disk are always in units of a page.

When the program tries to access address 0, for example, using the instruction

MOV REG.O

virtual address 0 is sent to the MMU. The MMU sees that this virtual address falls
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Virtual
address
space
6OK-54K X
56K-60K | X | | Vinual page
S52K-56K, X
48K-E2K X
44K -48K 7
aoK-44K | X |
Physical
36K -40K 5 memory
. 32K-36K X address
28K-32K X 28K-30K
24K-28K p.d DAK.2BK
20K-24K 3 20K-24K
16K-20K 4 18K-20K
12K-16K 0 12K- 18K
8K-12K 8 aK-12K
A¥-BK 1 e AK-BK
OK-4K [ 2 X }\DK-M{
F‘ag?a frame

Figure 4-10. The rclation between virtual addresses and physical memory ad-
dresses is given by the page table.

in page 0 (0 1o 4095), which according to its mapping is page frame 2 (8192 to
12287). It thus transforms the address to 8192 and outputs address 8192 onto the
bus. The memoery knows nothing at all about the MMU and just sees a request for
reading or writing address 8192, which it honors. Thus, the MMU has effectively

mapped all virtual addresses between 0 and 4095 onto physical addresses 8192 to
12287.

Similarly, an instruction
MOV REG 8192
1s effectively transformed into

MOV REG,24576

because virtual address 8192 is in virtual page 2 and this page is mapped onto
physical page frame 6 (physical addresses 24576 to 28671). As a third example.
virtual address 20500 is 20 bytes from the start of virtual page 5 (virtual addresses
20480 to 24575} and maps anto physical address 12288 + 20 = 12308,

By itself, this ability to map the 16 virtual pages onto any of the cight page
frames by setting the MMU''s map appropriately does not solve the problem that
the virtual address space is larger than the physical memeory. Since we have only
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eight physical page frames, only eight of the virtual pages in Fig. 4-10 are mapped
onto physical memory. The others, shown as a cross in the ﬁgure,l are not
mapped. [n the actual hacdware, a Present/absent bit keeps track of which pages
are physically present in memory.

What bappens if the program tries fo use an unmapped page, for example, by
using the instruction

MOV REG.32780

which is byte 12 within virtual page 8 fstarting at 32768)7 The MMU notices that
the page is unmapped (indicated by a cross in the figure} and causes the CPU to
trap to the operating system. This trap is called a page fault. The operating sys-
tem picks a little-used page frame and writes its contents back to the disk. It then
fetches the page just referenced into the page frame just freed, changes the map,
and restarts the trapped instriction,

For example, if the operating system decided to evict page frame 1, it would
load virtual page 8 at physical address 4K and make two changes to the MMU
map. First, it would mark virtual page 1's entry as unmapped, to trap any future
accesses to virtual addresses between 4K and 8K. Then it would replace the cross
in virtual page 8's entry with a 1, so that when the trapped instruction is re-
executed, it will map virtual address 32780 onto physica! address 4108,

Now let us look inside the MMU to see how it works and why we have
chosen to use a page size that is a power of 2. In Fig. 4-11 we see an example of
a virtual address, 8196 (D010000000000100 in binary), being mapped using the
MMU map of Fig. 4-10. The incoming 16-bit virual address is split into a 4-bit
page number and a 12-bit offset. With 4 bits for the page number, we can have 16
pages, and with 12 bits for the offset, we can address all 4096 bytes within a page.

The page number is used as an index into the page table, yielding the number
of the page frame corresponding to that virtual page. If the Present/absent bit is
0, a trap to the operating system is caused. If the bit is 1, the page frame number
found in the page table is copied to the high-order 3 bits of the outpul register,
along with the 12-bit offset, which is copied unmoditied from the incoming virtual
address. Together they form a 13-bit physical address. The output register is then
put onto the memory bus as the physical memory address,

4.3.2 Page Tables

In the simplest case, the mapping of virtual addresses onto physical addresses
1s as we have just described it. The virtual address is split into a virtual page
number (high-order bits) and an offset (low-order bits). For example, with a 16-
bit address and a 4-KB page size, the upper 4 bits could spectfy one of the 16 vir-
tual pages and the lower 12 bits would then specify the byte offset {0 to 4095)
within the selected page. However a split with 3 or 5 or some other nurmtber of
bits for the page is also possible. Different splits imply different page sizes.
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Figure 4-}1. The internal operation of the MMU with 16 4-KB pages.

CHAP. 4

The virtual page number is used as an index into the page table to find the
entry for that virtual page. From the page table entry, the page frame number (it
any) i1s found. The page frame number is attached to the high-order end of the
offset, replacing the virtual page number, to form a physical address that can be

sent to the memory.

The purpose of the page table is to map virtual pages onto page frames.
Mathematically speaking, the page table is a function, with the virtual page

number as argument and the physical frame number as result

. Using the result of

this function, the virtual page field in a virtual address can be replaced by a page
trame field, thus forming a physical memory address.

Despite this simple description, two major issues must be faced:

1. The page tabie can be extremely large.

2. The mapping must be fast.
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The first point foltows from the fact that modem compulers use virtual uddre.‘-;:-_:.es
of at least 32 bits. With, say. a 4-KB page size, a 32-bit address space has 1 mil-
lion pages. and a 64-bit address space has morc than you want to conmmpiutrﬂ._
With | million pages in the virtual address space, the page table must have 1 mil-
lion entries. And remecmber that each process needs its own page table (because it
has 1ts own virtual address space).

The second point is a consequence of the fact that the virtual-to-physical niap-
ping must be done on every memory reference. A typical instruction has an
instruction word. and often a memory operand as well, Consequently, it is neces-
sary to make |, 2. or sometimes more page table references per instruction. If an
instruction takes, say, 4 nsec. the page table lookup must be done in under 1 nsec
to avoid becoming a major bottleneck,

The need for large. fast page mapping is a significant constraint on the Wiy
computers are built.  Although the problem is most serious with top-of-the-line
machimes. i€ is also an issue at the low end as well. where cost and the
price/performance rativ are critical. In this section and the following ones, we
will fook at page table design in detail and show a number of hardware solutions
that have been used in actual computers.

The simplest design (at least conceptually) is 10 have a single page table con-
sisting of an array of fust hardware registers. with one entry tor each virtual page.
indexed by virtual page number, as shown in Fig. 4-11. When a process is started
up. the operating system loads the registers with the process’ page table. taken
from a copy kept in main memory. During process cxecution. no more memaory
references are nceded for the page table. The advantages of this method are that it
1s straightforward and requires no memory references during mapping. A disad-
vantage 1s that it is potentially expensive (il Lhe page table 1s large). Having to
load the full page table at every context switch hurts performance.

At the other cxtreme, the page table can be entirely 1n main memeory. All the
hardwarc needs then is a single register that points to the start of the page lable.
This design allows the memory map to be changed at a context switch by reload-
mg one register. Of course, it has the disadvantage of requiring one or more
memory references to read page table entries during the exccution of each instruc-
uon. Tor this reason. this approach is rarcly used in its most pure torm, but below
we will study some variations that have much better pertormance,

Multilevel Page Tables

To get around the problem of having to store huge page tables in memory all
the time, many computers use a multilevel page table. A simple example is
shown in Fig. 4-12. In Fig. 4-12{a} we have a 32-bit virtual address that is parti-
tioned into a 10-bit PT/ field, a 10-bit PT2 field. and a 12-bhit Offser field. Since
offsets are 12 bits. pages are 4 KB, and there are a total of 22° of then
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Figure 4-12. (a} A 32-bit address with two page table fields. (b} Two-level
page tables,

The secret to the multilevel page table method is to avoid keeping all the page
tables in memory all the time. In particuiar, those that are not needed should not
be kept around. Suppose, for example, that a process needs 12 megabytes, the
bottom 4 megabytes of memory for program text, the next 4 megabytes for data,
and the top 4 megabytes for the stack. In between the top of the data and the bot-
torn of the stack is a gigantic hole that is not used.

In Fig. 4-12(b) we see how the two-level page table works in this example.
On the left we have the top-level page table, with 1024 entries, corresponding to
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the 10-bit PT/ field. When a virtual address is presented to the MMU, it first
extracts the PT1 field and uses this value as an index into the top-level page table.
Each of these 1024 entries represents 4M because the entire 4-gigabyte (i.e.. 32-
bit) virtual address space has been chopped into chunks of 1024 bytes.

The entry located by indexing into the top-level page table yields the address
or the page frame number of a second-level page tabie, Entry G of the top-level
page table points to the page table for the program text, entry 1 poinis to the page
table for the data, and entry 1023 points to the page table for the stack, The other
(shaded) entries are not used. The P72 field is now used as an index into the
selected second-level page table to find the page frame number for the page itself,

As an example, consider the 32-bit virtual address 0x00403004 (4,206,596
decimai), which is 12,292 bytes into the data. This virtual address corresponds to
PT1=1, PT2=2, and Offset =4, The MMU first uses PT/ 1o index into the
top-level page table and obtain entry 1, which corresponds to addresses 4M to 8M.
it then uses P72 to index into the second-level page table just found and extract
entry 3, which corresponds ro addresses 12288 to 16383 within its 4M chunk (i.c.,
absolute addresses 4,206,592 to 4,210,687), This entry contains the page frame
number of the page containing virtual address 0x00403004. If that page is not in
memory, the Present/absent bit in the page table entry will be zero, Causing a
page fault. If the page is in memory, the page frame number taken from the
second-level page table is combined with the offset (4) to construct a physical
address. This address is put or the bus and sent to memory.

The interesting thing to note about Fig. 4-12 is that although the address space
contains over a million pages, only four page tables are actually needed: the top-
level table, and the second-level tables for O to 4M, 4M to 8M, and the top 4M.
The Present/absent bits in 1021 entries of the top-level page table are set to 0,
forcing a page fault if they are ever accessed. Should this occur, the operating
system will notice that the process is trying to reference memaory that it is not sup-
posed to and will take appropriate action, such as sending it a signal or killing it.
In this example we have chosen round numbers for the various sizes and have
picked PT7 equal to PT2 but in actual practice other values are also possible, of
course. :

The two-level page table system of Fig. 4-12 can be expanded to three, four,
or more levels. Additional levels give more flexibility, but it is doubtful that the
additional complexity is worth it beyond three levels.

Structure of a Page Table Entry

Let us now turn from the structure of the page tables in the large, to the details
of a single page table entry. The exact layout of an entry is highly machine
dependent, but the kind of information present is roughly the same from machine
to machine. In Fig. 4-13 we give a sampie page table entry. The size varies from
computer to computer, but 32 bits is a common size. The most important field is
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the Page freane number. After all, the goal of the page mapping is to IGC?IE [h_ls
value. Next to it we have the Present/absent bit, If this bit 15 |, the entry is valid
and can be used. If it is 0. the virtual page to which the entry belongs is not
currently in memory. Accessing a page table entry with this bit set to 0 cauvses a
page fauit.

Caching
disabled #odified Present/absent
J ; ;_.
7 ’ ]
%/ // Fage frame number

kS

I i

Heferenced Protection

Figure 4-13. A typical page whle enury,

The Protection bits tell what kinds of access are permitied. In the simplest
form, this field contains | bit, with 0 for read/writec and 1 for read only. A moge
sophisticated arrangement is having 3 bits, one bit each for enabling reading. writ-
ing, and executing the page.

The Modified and Referenced bits keep track of page usage. When a page s
written to, the hardware automatcally sets the Modified bit. This bil is of value
when the operating system decides to reclaim a page frame. #f the page in it has
been modified (i.e., is “*dirty™), it must be written back to the disk. [ 1t has not
been modified (i.e.. is “clean™). it can just be abandoned, since the disk COPY s
still valid. The bit is sometimes calied the dirty bit. since it reflects the page’s
stage.

The Referenced bit is set whenever a page is referenced, either for reading or
writing. [ts vatue is to help the operating system choose a page to cvict when o
page fault occurs. Pages that are not being used are better candidates than pages
that are, and this bit plays an important role in several of the page replacement
algorithms that we will study later in this chapter, '

Finally. the last bit allows caching to be disabled for the puge. This feature is
important for pages that map onto device registers rather than memory. i the
operating system is sigting in a tight loo